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ABSTRACT. We prove that continuous sentences preserved by the ultra-
mean construction (a generalization of the ultraproduct construction) are
exactly those sentences which are approximated by linear sentences. Con-
tinuous sentences preserved by linear elementary equivalence are exactly
those sentences which are approximated in the Riesz space generated by
linear sentences. Also, characterizations for linear A, -sentences and pos-

itive linear theories will be given.
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1. INTRODUCTION

First order model theory is a branch of mathematical logic which studies
algebraic structures by logical tools. Continuous logic extends these tools and
provides a logical framework for study of continuous structures such as metric
groups, Banach spaces etc (see [5]). Part of the expressive power of first order
logic is related to the ability to use arbitrary finitary connectives. In fact, the
system {A, -} is complete and generates other connectives such as V and —.
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So, for example, the formula x # 0 — Jy(zy = 1) states that the intended
ring is a field. A similar (conditional) formula states that the intended field
is algebraically closed. Continuous logic uses a similar complete system of
connectives and generates a relatively strong expressive power for continuous
structures. For example, using X as a connective, the parallelogram law

2ll2ll* + 2[ly1* = llz + yl* + ]z — ]

states that the intended Banach space is indeed a Hilbert space. Similarly,
using absolute value as a connective, one can state that the given probability
algebra is atomless.

Linear continuous logic is the sublogic of continuous logic obtained by re-
stricting the connectives to addition and scalar multiplication (see below),
hence reducing the expressive power considerably. This linearization leads to
the linearization of most basic tools and techniques of continuous logic such as
the ultraproduct construction, compactness theorem, saturation etc. (see [4]).
Among consequences of the classical compactness theorem are preservation the-
orems which relate categorical properties of classes of structures to logic. In
[3], some linear preservation theorems where deduced from the linear variant
of compactness theorem. The goal of the present paper is first to characterize
linear formulas among other continuous formulas as those which are preserved
by the ultramean construction. It is well-known in first order logic that every
A, sentence is equivalent to a Boolean combination of X,, sentences. We prove
that every linear A,, sentence is equivalent to a linear combination of linear
Y., sentences. We also characterize positive theories as those preserved by sur-
jective expanding homomorphisms. We start with reviewing the main notions
and definitions of full and linear continuous logics.

2. CONTINUOUS LOGIC

Continuous logic (see [5]) is usually presented as a variant of Lukasiewicz
logic where the operations such as A,V and 1 — z on the unit interval are
used as connectives. However, to obtain linear continuous logic as a sublgic
of continuous logic, we use algebraic operations on the reals as connectives.
Let L be a first order language consisting of function, relation and constant
symbols. L is a Lipschitz language if it is assigned a Lipschitz constant Ag > 0
to each function symbol F' and respectively a Lipschitz constant A > 0 as
well as a bound by > 0 to each relation symbol R . It is always assumed that
L contains a distinguished binary relation symbol d which plays the role of =
in first order logic. Furthermore, by = 1 and Ay = 1. An L-structure is a
metric space (M, d) on which the symbols of L are appropriately interpreted,
i.e. for F € L, the function FM : M™ — M is Ap-Lipschitz and for R € L, the
relation RM : M™ — R is Ag-Lipschitz with ||[RM||,, < bg. In particular, we
must have that diam(M) < 1. Let L be a Lipschitz language. L-formulas are
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defined as follows:

T, d(tlth)a R(tlv"'vtn)a ¢+¢7 agb/\wa ¢\/¢

where r € R, R € L and ty,...t, are L-terms. A formula without free variable
is called a sentence. Expressions of the form ¢ < v are called conditions. A
theory is a set of closed (without free variable) conditions. A formula in which
the connectives A,V do not appear is called a linear formula. If ¢(Z) is a
formula and M is a structure, the real value ¢*(a) is defined by induction
on the complexity of ¢. On can easily check that every map ¢ : M™ —
R is bounded and Lipschitz. A wider framework is obtained if one replaces
Lipschitz constants with moduli of uniform continuities (hence deducing that
every ¢M is uniformly continuous). Here, we restrict ourselves to Lipschitz
languages since we mainly deal with linear formulas whose properties are related
to Lipschitzness.

The logic based on the set of all formulas (stated above) is called contin-
uous logic. Of course, thanks to the Stone-Weierstrass theorem, this logic is
usually presented in an equivalent way where [0, 1] is taken as value space and
{0,1, 5, =} is the system of connectives (see [5]). In contrast, by restricting to
the class of linear formulas one obtains a weaker logic which we call linear con-
tinuous logic. In this logic, linear variants of several classical model theoretic
results hold. In particular, the linear compactness theorem holds which will
be discussed below. The purpose of the present paper is first to characterize
linear formulas among other continuous formulas. Then, to characterize some
special sorts of linear formulas (mainly A, formulas and positive formulas)
among other linear formulas. We first give a brief review of linear continuous
logic. More details can be found in [4].

3. THE LOGIC OF LINEAR FORMULAS

Two L-structures M, N, are linearly elementarily equivalent, M =, N, if
for every linear sentence ¢ one has that o™ = ¢. The linear variant of
elementary embedding is defined similarly. Note that these notions are weaker
than the corresponding full versions defined in [5] where all continuous formulas
are considered. It is not hard to check that linear variants of elementary joint
embedding property and elementary amalgamation property hold.

The linear variant of the ultraproduct construction is the ultramean con-
struction. Let (M;,d;)ier be a family of L-structures and g : P(I) — [0,1] an
ultracharge (a maximal finitely additive probability measure on I). First define
a pseudo-metric on [],.; M; by setting (see [9] for the definition of integral)

d(a,b) = /dz(al,bz)dp

Obviously, d(a,b) = 0 defines an equivalence relation. The equivalence class of
(a;) is denoted by [a;]. Let M be the set of equivalence classes. Then d induces

iel
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a metric on M by which is again denoted by d. So, d([a;], [b;]) = [ d;i(a;,b;)dp.
Define an L-structure on (M, d) as follows:

M= [cMi]
FM([aj], ... FMi(a,,..)]
RM ([ai], /RM (az,...)d

where ¢, F, R € L. The structure M is called the ultramean of structures M;
and is denoted by [] o Mi. Note that an ultrafilter F corresponds to the 0 — 1
valued ultracharge p where p(A) = 1if A € F and = 0 otherwise. In this case,
11 o M; is exactly the ultraproduct [ 1~ M; and by Los theorem, for every (linear
or nonlinear) L-sentence o one has that o™ = lim; 0. In the general case,
we have the following variant of Los$ theorem (see [2]).

Theorem 3.1. For every linear formula ¢(z1,...,7,) and [a}],...,[a?] € M
Mlal).oo ) = [ 0 (al.al)dg.

If M; = N for all ¢, the ultramean is denoted by N® and is called power
ultramean. One checks that the map a — [a], for a € N, is an elementary
embedding from N to N¥ (i.e. preserves linear formulas). Note that if |[N| > 2
and p is not an ultrafilter, N¥ is a proper extension of N. Also, if I = {1,2}
and p(1) = X, p(2) = 1— X where A € [0, 1], the ultramean of (M;);c; is denoted
by AM; + (1 — A\)M>. In this case, for each linear sentence o we have that

ollo Mi = \gM1 4 (1 — \)o M2,

A condition is an expression of the form ¢ < 1 where ¢ and v are formulas.
It is a linear condition if ¢, are linear formulas. It is a closed condition if ¢,y
are sentence. The expression ¢ = v is an abbreviation for {¢ < ,v < ¢}.
M is model of a closed condition ¢ < v if M < M. A set of closed linear
conditions is called a linear theory. The linear closure of a theory T is the set of
all conditions ), 7¢; < >, 7i); where 0 < rq,...,7, and ¢1 < 91, ..., I < Uy
belong to T'. A linear theory T is linearly closed if it coincides with its linear
closure. T is linearly satisfiable if every condition in its linear closure has a
model. It can be proved by a linear variant of Henkin’s method (see [3]) that

Theorem 3.2. (Linear compactness) Every linearly satisfiable linear theory is
satisfiable.

Let T be a set of L-formulas. A formula ¢(Z) is approximated by formulas
in T if for each € > 0, there is a formula §(zZ) in I such that

MF |¢p(a) —0(a)| < e
for each model M and a € M.
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Let call two linear L-sentences o, 7 equivalent, o = n, if o™ = nM for every
M. We identify equivalent sentences. Up to this equivalence, the set of linear
L-sentences, denoted by D, forms a partially ordered real vector space where
o < nif o™ <M for every M. It is also normed by

o] = sup ™.
M

A linear theory T is linearly complete if for each sentence o, there is a unique
r such that ¢ = r € T. In this case, r is denoted by T'(¢). Then, the function
o+ T(o) is linear and positive. Note also that sup, < [T'(o)] = 1. So, the
linearly complete linear theory T' can be regarded as a positive linear functional
on D with ||T|| = 1. Conversely, it is easy to show by linear compactness
theorem that every positive linear functional 7' : D — R having norm 1 is
of this form. So, we may identify linearly complete theories with the norm 1
positive linear functionals on ID. Note that, regarding theories as functionals,
M E T means that o™ = T(o) for every linear sentence o. Let K denote the
set of all linearly complete linear theories. So, indeed K C D*. Put the weak™*
topology of D* on K. So, every T € K is continuous as a functional.

Proposition 3.3. K is a compact conver Hausdorff space.

Proof. Tt is clear that for T}, T € K and 0 < A < 1, AT} + (1 — \)T» € K. So,
K is convex. For compactness, note that IC is a closed subset of the unit ball
of D* hence compact by Alaoglu’s theorem (see [7] Th. 5.18). O

A function f: K — R is called affine if for every T7,To € L and 0 < A < 1
JOATy + (1= NT) = Af(T1) + (1 = N) f(T3).

The set of all affine continuous functions on K is denoted by A(K). This is a
Banach space.

Theorem 3.4. ([10] Corollary 1.1.12) Let K be a compact convex subset of
a locally convex space E. Any subspace of A(K) which contains the constants
and separates the points of K is dense in A(K).

Let ¢ be a (not necessarily linear) sentence in the Lipschitz language L.
We say ¢ is preserved by ultrameans if for every ultracharge space (I, p) and
models M;, i € I, one has that ¢ = [ ¢Midp. Linear sentences are preserved
by ultrameans. It was proved in [8] that linear continuous logic is maximal
with the properties linear compactness and the linear variant of elementary
chain theorem. A consequence of maximality is that every formula preserved
by ultrameans is approximated by linear formulas. Here, we give a simpler
proof for this result using Theorem 3.4. Both proofs are based on the unproved
assumption that a linear variant of Shelah-Keisler theorem holds, i.e. if M =,
N, then there are ultracharges (I1, p1), (12, p2) such that M®1 ~ N®2,
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Theorem 3.5. Assume the linear variant of Shelah-Keisler theorem holds.
Then, if ¢ is preserved by ultrameans, ¢ is approximated by linear sentences.

Proof. For each linear sentence o define a function f, on K by setting
J+(T) = T(0).
Clearly, f, is affine and continuous. Let
X ={f,: o alinear L-sentence}.

X is a linear subspace of A(K) which contains constant functions. Moreover,
if Ty # Ty, there is a linear sentence o such that Ty (o) # Ta(0). So, f,(T1) #
fo(T3). This shows that X separates points. By Theorem 3.4, X is dense in
A(K). Define similarly f,(T) = ¢M where M F T. Note that if M =, N, by
the assumption, for some ultracharges p1, p2 one has that M*®* ~ N#2. Hence,

¢M:¢MK)1:¢N :¢N
So, fg is well-defined. Let us show that f, is affine. Let A € [0,1] and 11,15 €
K. Let My ETy and My E Ts. Then, M = AM; + (1 — A)Ms is a model of the

theory ATy + (1 — \)T2. Moreover, since ¢ is preserved by ultrameans, we have
that

foOAT1 4+ (1= NTo) = ™M =A™ + (1= N)p™2 = Afy(T1) + (1= X) f5(T2).

©2

So, f, is affine. Note also that f, is continuous, i.e. for each r the sets
{Tel: fo(T) <r}, {Tek: fo(T) =1}

are closed. For example, assume T}, — T in the weak* topology and f4(T%) < r
for each k. We show that f,(7T') < r. Take a nonprincipal ultrafilter F on N.
Let My, E T}, and M =[] Mj,. Then, we have that M F T. As a consequence,

= M = 1 ]\/Ik = 1 <
fo(T) = ¢7 =lim¢ tim fo (i) < 7

We conclude that f, € A(K). So, since X is dense, for each ¢ > 0 there is
a linear sentence o such that for every T' € IC, |fy(T) — f-(T)] < €. In other
words, for every M, |¢pM — M| < e. a

An L-sentence o is preserved by linear elementary equivalence if for every
M, N, whenever M =, N, one has that c™ = o¥. Note that if o, are
preserved by = then so does 0 A n and o V 7. In fact, every sentence in the
Riesz space generated by the set of linear sentences is preserved by =,. We
denote this Riesz space by A.

Proposition 3.6. ¢ is preserved by linear elementary equivalence if and only if
it is approrimated by the Riesz space A generated by the set of linear sentences.
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Proof. As in the proof of Theorem 3.5, for each o € A, define f, : K — R by
fo(T) = o™
where M E T is arbitrary. Let
X ={fs: o €A}

Then, X is a sublattice of C(K) which contains 1 and separates points. In
particular, —f, = f_s, fo + fy = fo4n and fo A f; = fory. Note that, by the
assumption, the function fy(T) = ¢™ for M F T is well-defined. Since ¢ is
preserved by ultraproducts, it is shown similar to the proof of Proposition 3.5
that f, is continuous. So, by the lattice version of Stone-Weierstrass theorem
(see [1] Th. 9.12), f, is approximated by elements of A. |

In the proof of Theorem 3.5 one needs the linear variant of Shelah-Keisler
theorem to show that ¢ is preserved by linear elementary equivalence. So one
deduces (without this assumption) that if ¢ is preserved by ultrameans and
linear elementary equivalence, then it is approximated by linear sentences.

4. A,, SENTENCES

From now on, by formula (sentence, theory etc) we mean a linear one. A
formula ¢ is ¥g = Iy if it contains no quantifiers. A formula ¢ is X, 41 (resp.
41) if ¢ = sup,, . o (resp. ¢ = infy . ., 1) where ¢ is II,, (resp. %,).
We may extend a bit the terminology and say that ¢ is X, (resp IT,,) if it is
equivalent to a X, (resp II,,) formula. The notion of 3, extension generalizes
the notion of embedding. If M is a subset of N, then N is a ¥,, extension of
M if for each ¥,,-formula ¢(Z) and @ € M one has that ¢™(a) < ¢~ (a). So,
Yo extension is the same as embedding.

Lemma 4.1. Let My C My C My C -+ be a X,-chain of L-structures. Let
M =UqcwwM,. Then

(i) M is a X, extension of each M.

(ii) For each 11,1 sentence ¢, if r < o™= for all o, then r < ¢M.

Proof. (i) The claim holds for n = 0. Assume it holds for n — 1. Let ¢(z) =
sup; (%, y) where ¢ is II,,_1. Let ¢Ma (@) = r. Then, for each ¢ > 0, there

exists b € M, such that 7 —e < Mo (a, B). Consider the Y, chain
(My,a,b) C (Myy1,a,b) C -

Since r — ¢ < ¥(a,b) holds in every model of this chain, by the induction
hypothesis, we have that r — € < z/J(M’a’E) (@,b). Hence, 7 — € < sup; M (a, ).
Since e is arbitrary, we have that r < sup; M (a, ).

(ii) Let ¢ = inf; 1 (Z) where v is ,,. Assume r < ¢pMe for all a. Let a € M.
Then @ € Mg for some 8 and r < ¥4 (a). So, by (i), 7 < ™M (a). We conclude
that r < qSM. O
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The following result is the linear variant of Theorem 3.1.11 of [6]:

Theorem 4.2. The following are equivalent (forn > 1):
(i) ¢ is approxzimated by both ¥,11 sentences and Il,,11 sentences.
(ii) ¢ is approzimated by linear combinations of X, sentences.

Proof. (ii)=(i) is easy. (i)=-(ii): We first prove the following claim for each
M, N.

Cram: If M = 6% for each ¥, sentence 6, then M = ¢™.
PROOF OF THE CLAIM: Assume M, N satisfy the hypothesis of the claim. We
construct a ¥,-chain

M=MyCNoCM CNC---C M CN,C---
such that for all k&
]\/[kE]\47 NkEN. (1)

Suppose that

Mo C No C -+ C My, C Ny,
has been constructed such that (1) holds for ¥ < m. Let T be the set of
all conditions 0 < ¢ holding in Ny where o is a X, sentence in L U {¢;, :
b € N,}. Clearly, T is linearly closed. For 0 < o(b) in T, the condition
0 < sup; o(g) holds in N, and hence in M, by (1) and assumption of the
claim. So, T UTh(M) has a model, say M,,+1. One checks that

MOgNOgnggngMm+1
is a X, chain. Similarly, one obtain a ¥, chain
MO gNOQ nggngMm-l-l gNm-‘rl

in which the conditions (1) hold for & < m + 1. So, the required infinite
chain is obtained. Now, let r < ¢ hold in M. Then, it holds in every M.
Since ¢ is approximated by II, 11 sentences, by Lemma 4.1 (ii), » < ¢ holds in
UM}, = UNj. Suppose r < ¢ does not hold in N. Then —r+¢ < —¢ holds in N
for some € > 0. Since —¢ is approximated by II,, 11 formulas, again by Lemma
4.1, —r + ¢ < —¢ must hold in Uy N which is a contradiction. Similarly, if
r < ¢ holds in N, it must hold in M too. We conclude that ¢M = ¢™. A

PROOF OF THE MAIN THEOREM:

Let T',, be the set of linear combinations of 3,, sentences (hence a vector space).
Let KC,, be the set of all maximal satisfiable sets T' of conditions o = 0 where
o €T',,. Asin Section 3, each T € IC,, is regarded as a positive norm one linear
functional on T, i.e. T(0) = o™ for o € T',, and some (or any) M F T. It is
easily checked (like proposition 3.3) that KC,, is compact convex and Hausdorff.
For o € T'), set
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Let

X=A{f,: ceT,}.
Then, X is a linear subspace of A(K,,) (the set of affine continuous real valued
functions on K;,;) which contains constant functions. Assume 77 # T5. Then,
there is a X, sentence o such that T (o) # Ta(0). So, fo(T1) # f-(T2). This
shows that X separates points. By Theorem 3.4, X is dense in A(IC,,).

Define similarly f4(T) = ¢™ where M E T. By the above claim, f, is well-
defined. It is clearly affine. The proof of continuity of fy is as in the proof of
theorem 3.5. Assume T} — T in the weak® topology of K, and Tj(¢) < r for
each k. Take a nonprincipal ultrafilter 7 on N. Let My F Ty and M =[] M.
Then, we have that M E T. As a consequence,

£o(T) = 6 = lim ™ =l Ty (9) <

)

Hence fy € A(K,). We conclude that for each € > 0 there is a o € T, such
that for every T € KCp, |fs(T) — fo(T)| < €. In other words, for every M,
|pM — M| < e. O

5. POSITIVE AXIOMATIZATION

Two main preservation theorems are characterization of universal conditions
and universal-existential conditions. A condition is universal if it is of the form
0 < infz ¢(Z) where ¢ is quantifier-free. A condition is universal-existential (or
V3 for short) if it is of the form 0 < infz sup; ¢(7, y) where ¢ is quantifier-free.
A theory T is preserved under substructure if any substructure of a model of
T is a models of T'. It is inductive if whenever My C M; C --- and every M,
is a model of T then UM,, is a model of T'. It was proved in [3] that a theory T
is preserved under substructure if and only if it has a set of universal axioms.
It is inductive if and only if it is axiomatized by V3-conditions. In this sections
we study two other preservation theorems, namely characterization of theories
preserved by expanding and contracting surjective homomorphisms.

Definition 5.1. An expanding (resp. contracting) homomorphism is a function
f: M — N such that

- for each c € L, f(cM) =N

- for each F € L and a € M, f(FM(a)) = FN(f(a))

- for each R € L (including d) and @ € M, RM(a) < RN(f(a)) (resp.
RN (f(a)) < RM(a)).

A formula is positive (resp. mnegative) if it is built up from atomic (resp.
negative atomic) formulas (including the reals » € R in both cases) using the
connectives +, s- for s > 0 and the quantifiers inf, sup. So, positive formulas
are built as follows:

T, d(t17t2)7 R(tla"'7tn)7 ¢)+¢7 3¢7 sup ¢7 11;1f¢
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where r € R and s € RT. Obviously, ¢ is negative if and only if —¢ is equivalent
to a positive formula. A positive axiom is a condition of the form 0 < o where
o is positive. Similarly, if o is negative, 0 < o is called a negative aziom.

It is not hard to check that a surjective function f : M — N is an expand-
ing (resp. contracting) homomorphism if and only if for every positive (resp.
negative) formula ¢(Z) and @ € M one has that ¢™(a) < ¢™V(f(a)).

Lemma 5.2. Let A be a linearly closed set of closed conditions of the form
0< ¢. Assume 0 < ¢+ 1r € A whenever 0 < ¢ € A and 0 < r. Then for each
theory T the following are equivalent:

(i) T is aziomatized by A-conditions.

(ii) If M E T and every A-condition which holds in M holds in N, then
NET.

Proof. (1)=>(ii) is obvious. (ii)=(i): Let
Ta={0<deA: TEOL o}
Every model of T is a model of Ta. Conversely assume N E Ta. Let
Y={p+e<0: 0<peA 0<eand NF ¢+e<0}

Note that ¥ is linearly closed. We show that T'UY is satisfiable. It is sufficient
to show that T'U {¢ + e < 0} is satisfiable for each ¢ + ¢ < 0 € X. Suppose
not. Then for some ¢ +¢ <0 € X and 0 < d < ¢, we have that T'F § < ¢ + .
So, N E § < ¢+ € which is a contradiction. Let M be a model of T UX. Then,
every A-condition holding in M holds in N. So, by (i), NE T. O

Let
ediagt (M) = {0 < #(a) : 0< ¢™(a), a€ M, $(z) is positive}
a): 0< ¢M(a), a e M, ¢(z) is negative}
ediag(M) = {0 < ¢(a@) : 0< ¢™(a), a € M, ¢(z) is arbitrary}
Following [6] (p.151), let Mpos N mean that every positive closed condition

holding in M holds in N. In other words, o™ < ¥ for every positive sentence
ag.

Theorem 5.3. A theory T is preserved under surjective expanding homomor-
phisms if and only if it has a set of positive axioms.

Proof. We prove the nontrivial direction which is a linearized variant of the
proof of Theorem 3.2.4. in [6]. Assume T is preserved by surjective ex-
panding homomorphisms. One first proves that if Mpos N then there is
an elementary extension N < N’ and a mapping f : M — N’ such that
(M, a)aeppos (N', f(a))aenr- For this purpose one checks that ediag® (M) U
ediag(N) is linearly satisfiable.
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Similarly, if Mpos N, then there is an elementary extension M < M’ and a
mapping g : N — M’ such that (M’, g(b))penpos (N,b)pen. For this purpose,
one checks that ediag™ (N) U ediag(M) is linearly satisfiable. Now assume
My E T and Mypos Ny. Iterate the arguments to find chains

My M <..., No<N: <...

and maps
fit My — Nija, gi: Ni = M;
such that
(Mo, @)aecrs,Pos (N1, foa)aens,
(M, a, g1b)ae My, beN, POS (N1, foa, b)acmy ben,

and so forth. In particular, f; : M; — N;;1 is an expanding homomorphism
and f; C fis1, 954 € fiv1. Set M = U;M; and N = U;N;. Then My < M,
Nog < N and Uf; : M — N is a surjective expanding homomorphism. By the
assumption of proposition, we must have that Ng E T. Let A be the set of all
positive L-conditions. Thus, we have proved that the clause (ii) of Lemma 5.2
holds for A. We conclude T is axiomatized by a set of positive conditions. [

A similar proof shows that

Proposition 5.4. A theory T is preserved under surjective contracting homo-
morphisms if and only if it has a set of negative axioms.
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