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ABSTRACT. In this paper we study translation surfaces with the non-
degenerate third fundamental form in Lorentz- Minkowski space 3. As
a result, we classify translation surfaces satisfying an equation in terms
of the position vector field and the Laplace operator with respect to the

third fundamental form I17 on the surface.
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1. INTRODUCTION

Let L3 be the 3-dimensional Lorentz-Minkowski space, that is, the space R?
endowed with the metric

g1(X, X) = da* + dy?® — dz?,

where X = (z,y,2) € R3.
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For two vectors V = (v1,v9,v3) and W = (wy,ws,w3) in L3 the Lorentz
cross product of X and Y is defined by

V A W = (’Ug’u}g — V3W2,V3W1 — VW3, —V1W2 + ’Ugwl) .

Assume r : M? — L3 is an isometric immersion of M? into L3. Then the
position vector of M? in L? satisfies [7]

Ar = —2H, (1.1)

where H is the mean curvature vector of M2 in IL3. It follows from (1.1) that
M? is minimal in L? if and only if the immersion 7 is harmonic.

The notion of finite type immersion of submanifolds of a Euclidean space
has been widely used in classifying and characterizing well known Riemannian
submanifolds [6]. B.-Y. Chen posed the problem of classifying the finite type
submanifolds in the 3-dimensional Euclidean space E3. These can be regarded
as a generalization of minimal submanifolds.

The notion of finite type immersion has played an important role in classi-
fying and characterizing various submanifolds in Euclidean space.

Since then the theory of submanifolds of finite type has been studied by
many geometers.

In [9] F. Dillen, W. Goemans, I. Van de Woestyne have derived a classifica-
tion of translation surfaces in E3 and E3, satisfying the Weingarten condition.

A well known result due to Takahashi [18] states that minimal surfaces and
spheres are the only surfaces in E? satisfying the conditionAr = Ar, A € R.

In [11] Ferrandez, Garay and Lucas proved that the surfaces of E3 satisfying

AH = AH, A € Mat(3,3),

are either minimal, or an open piece of sphere or of a right circular cylinder.
In [10] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in
E? satisfying

Ar=Ar+ B, A€ Mat(3,3), B € Mat(3,1),

are the minimal surfaces, the spheres and the circular cylinders.

The authors [2] classified the factorable surfaces in the three-dimensional Eu-
clidean and Lorentzian spaces, whose component functions are eigenfunctions
of their Laplace operator.

M. E. Aydin studied constant curvatures of translation surfaces in the three
dimensional simply Isotropic space [1]. Also, Y. Yuan and H. L. Liu dealth with
translation surfaces of some new types in 3-Minkowski space [21]. B. Bukcu,
M. K. Karacan and D. W. Yoon, classified translation surfaces of Type 2 in
the three dimensional simply isotropic space I} satisfying A/z; = \jz;, J = 1T
JII [ II1, where \; € R. A7 denotes the Laplace operator with respect to the
fundamental forms I ,IT and III [5].
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In I3, when the generating curves lie in perpendicular planes, three types of
translation surfaces exist [5, 15].
Type 1: The surface M? is parametrized by

T(U,U) = (U,U, f(u) + g(v)),

and the translated curves are (u, 0, f(u)), (0,v, g(v)).
Type 2: The surface M? is parametrized by

T(ua U) = (ua f(u) + g(’U), U)a
and the translated curves are (u, f(u),0), (0,g(v),v).
Type 3: The surface M? is parametrized by

r(u,v) = %(f(u) +g(v),u—v+mu+v),

and the translated curves are £ (f(u),u+ Z,u— %), (9(v), 5 —v, 5 +v).

In [17] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos classified and
proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski
space E$ satisfying

AT = A7

are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or
imaginary radius. S. Stamatakis and H. Al-Zoubi in [16] classified the surfaces
of revolution with non zero Gaussian curvature in E? under the condition

Ay = Ay, A€ Mat(3,R).

In [8] M. Choi and D. W. Yoon studied the helicoidal surfaces with the
non-degenerate third fundamental form in Minkowski 3-space.

Recently, the authors [3] studied the translation surfaces in the 3-dimensional
Euclidean and Lorentz-Minkowski space under the condition AT y; = LT,
w; € R, where A1 denotes the Laplacian of the surface with respect to the
third fundamental form I11.

In this paper we study translation surfaces with the non-degenerate third
fundamental form in Lorentz- Minkowski space L3. As a result, we classify
translation surfaces satisfying an equation in terms of the position vector field
and the Laplace operator with respect to the third fundamental form 11 on
the surface.

2. PRELIMINARIES

A submanifold M? of a 3-dimensional Euclidean space E? is said to be of
finite type if each component of its position vector field r can be written as a
finite sum of eigenfunctions of the Laplacian A of M?, that is, if

k
r=r1rg+ g T4,
i=1
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where 7; are E3 -valued eigenfunctions of the Laplacian of (M?2,r) [6]:
Ar; =N ry, M eR) i=1,2,.. k.

If \; are different, then M? is said to be of k-type.
The coefficients of the first fundamental form and the second fundamental
form are

E = g(TuaTu)a F:g(ru,rv), G:g(rmrv);

L = g(T1Lu7N>7 M:g(ruv»N)a N:g(TW,N),
where r, = %, Ty = % and N is the unit normal vector to M?2.

In the classical literature, one write the third fundamental form as
IIT = ey1du® + 2e1adudv + easdv®.

The Laplace-Beltrami operator of a smooth function ¢ : M? — R, (u,v) —
©(u,v) with respect to the first fundamental form of the surface M? is the
operator A, defined by

Ao = -1 E G‘Pu_F(Pv +ﬁ E@U_F@u
YT JIEG—F?] |ou \ \/[EG—F?]) " 9v \ /|EG - F7]
The second Beltrami differential operator with respect to the third funda-
mental form 111 is defined by

-1 0 0

AT — — 2 (2 e -2y), 2.1

\el(ax’( lele 8901)) 1)

where e = det(e;;) and €/ denote the components of the inverse tensor of e;;.
If r = (r1,72,73) is a function of class C2 then we set

AL, — (AHITh ATy, AIHT,?’)'
The mean curvature H and the Gauss curvature K are, respectively, defined

by

EN L—-2FM
- +G

2(EG — F?)
and
LN — M?
Kog=———.
¢~ EG - F?

3. TRANSLATION SURFACES OF SOME NEW TYPES IN L3

The study of the translation surfaces in L3, H. Liu [13] investigated the
translation surfaces with constant mean curvature or constant Gauss curvature.
In [19] I. V. de Woestijne studied minimal translation surfaces.
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Definition 3.1. A surface M? in L3 is called a translation surface if it is given
by the graph
z(u, v) = f(u) +g(v),

where f and g are smooth functions on some interval of R.

A minimal translation surface in a 3-dimensional Euclidean space E? must
be a plane or a Scherk surface which is the graph of the function

1 1
z(u, v) = = log|cos(au)| — — log |cos(av)]|,
« a

where « is a non-zero constant.

In 3-dimensional Minkowski space L3, according to the spacelike direction,
timelike direction and lightlike direction, the translation surfaces can be con-
sidered belonging to

six types [21].

Type 1. Along spacelike direction and spacelike direction;

Type 2. Along spacelike direction and timelike direction;

Type 3. Along lightlike direction and lightlike direction;

Type 4. Along lightlike direction and spacelike direction;

Type 5. Along timelike direction and lightlike direction;

Type 6. Along timelike direction and timelike direction.

Let M? be a 2-dimensional surface, of the 3-dimensional Minkowski space
3. Using the standard coordinate system of L3 we denote the parametric
representation of the surface r(u,v) by

r(u,v) = (r1(u,v), ro(u,v), rs(u,v)).
Translation surfaces S, of types 5 and 6 can be written as [21]
S T(U,U) = (7"1(U,U)7 TQ(ua U)7 7’3(”,’0)) = (f(U—FU,’U)—Fg(’U), U, U) : (31)

(¢7) When |a| = 1, the surfaces S, is translation surface of type 5.
(73) When |a| > 1, the surfaces S, is translation surface of type 6.
The coefficients of the first fundamental form of the surface S, are:

E:1—|—f3, F:fumfv + 9u)s G:(afv +gv)2_1- (3.2)

We define smooth function W as

W = /e(EG — F2) = \/e((af, + g,)2 — f2 — 1),

where ¢ = +£1.
The unit normal vector of M? is given by
1
N :W(17 7fu7 afv + gv)
Then the coefficients of the second fundamental form of the surface S, are:
fuu afu'u a’2f’U’U + g’U'U
L=—, M= N = . .
e = Y, ! (33)
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From these we find that the mean curvature H and the curvature Kg of
(3.1) are given by

(1 + fi)(a?fvv +gvv) - 2afufuv(afv +gv) + fuu((afv +gv)2 - ]-)

H = VE (3.4)
and
fuu a2fvv +g'uv - a2 31;
K¢ = ( 7 ) : (3.5)
By a transformation
T =u-+av (3 6)
y=v, ’
and ggzgg # 0.
Sat r(zy)=(f(=)+9), z—ay, y) . (3.7)
From (3.7) we have
E=1+f}, F=—a+ fo9y, G=—140d"+g,.
The unit normal vector of M? is given by
1
N :W(l» _f$7 af:r: + gy)'
The coefficients of the second fundamental form of the surface S, are:
fox Gyy
L= M=0, N=2=.
w’ ’ w
From (3.4) and (3.5) we get
L+ gy + (=1 + a® + g2) foa
H— ( J2)gyy + ( gy)f (3.8)
2W3
and
fag,
Kg = Tﬁya (39)

where W = \/e((afs + gy)% — 2 — 1).
The components of the third fundamental form of the surface M2 is given
by

ON ON. ef2G ON ON € freayyF
e QL(ax, Bx) T gL(ax, ay) W@ 0)
B ON ON B sgzyE
€20 = gL( 6y ) 8y ) - W4 )
hence
Vel = KeW,
where ¢ = +1.
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4. TRANSLATION SURFACES OF TYPE 5 IN E{’ SATISFYING Ar; = \;7;

In this part we explore the classification of the translation surfaces M? of
some new types in E} satisfying the condition Ar; = \;r;. The Laplacian A of
M? can be expressed as follows:

—£

Ap = e

(We(Gpaa + Epyy — 2Fpay) + Q(z,y)pa + P(z,y)0y],  (4.1)

where

Q(z,y) = Hi(fa—alafstgy)), P(z,y)=—Hi(afstg,), Hi=EN+GL-2FM.
We have the following

Theorem 4.1. Let M? be an affine translation surface given by (3.1) in E3.
Then M? satisfies the equation Ar; = \ir; (i = 1,2,3) if and only if one of the
following statement is true:

1) M? has zero mean curvature everywhere.

2) M? is parametrized as

r(u,v) = < eEX3VV =302 — ¢
o MV =302 —c+ 1

5. TRANSLATION SURFACES IN L3 SATISFYING AT, = \;r;

u, v), A3y + ¢ < 0.

In this part we explore the classification of the translation surfaces M? of
some new types in L2 satisfying the condition

AIII’I‘i = )\27'1 (51)

By a straightforward computation, the Laplacian A’f! of the third funda-
mental form ITT on M with the help of (3.10) and (2.1) turns out to be

AT = 2 1+ f2 iQ_i_ —1+a’+g; 8724_2 —a+ fegy\ 0?
r2.qc Ox? ggy dy? fmmgyy 0z0y
1 (1+f2\ 0 1 [(-1+a®+g2\ 0
() o () o),
fra fax z Ox Gyy Gyy Y 0y

By using (5.1) and (5.2) we have the following equations
2 2 2 2
I A et S Y <1+f5> L ( 1+9y> _ Alf+o)
¥ y

fax Gyy fox fox Gyy Gyy w2
(5.3)
1 [1+f2 a [a®—1+g; Ao (z — ay)
— - —= = - (5.4)
fra Sz z  Yyy Gyy Y w
1 (a*>=1+g] A3y
= () o (5.5)
yy yy v
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Differentiating (5.5) with respect to x we obtain

1 [a®>—1+¢2
I ENEEEY

yy yy

) (a®f, + agy — fz) =0. (5.6)

If af, + agy, — fr =0, then f,, = 0 and g,,, = 0, it is a contradiction.
Then there exists d; € R* such that

2_1+ 2
LT g, (5.7)

9yy
We get also, by the equation (5.5), A3 = 0.
Then, (5.3) and (5.4) can be written as the forms:

fww fwm z w2 ' )
Differentiating (5.9) with respect to y, we have
2 [1+ f2
Using (5.7), we have
2 (1+ f2
= < 7 / ) (afs +gy)(—1+ a? +g§) =dials.
Taking the derivative with respect to y, we have
2 [1+ f2
Jf( ; fﬂ”) Gyy(—1+ 0> + 3¢% + 2af,g,) = 0. (5.10)
rx TT T

We discuss by cases:
Case 1. If —1+a?% + 395 + 2afzg9y =0, then f,, =0, a contradiction.

Case 2. If (j—f) — 0. Then (5.9) implies Ay = 0.
Then there exists d; € R* such that

1+ /2
ij- = ds. (5.11)
Substituting in (5.8), we have
—W?(dy + d2) = Mi(f +9). (5.12)

Let di + do # 0. On differentiating (5.12), with respect to y, we find

Algy

e T S+ ey,
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and so fp, = 0, a contradiction. So, it is d; + d2 = 0. Consequently, from
(5.12), it is A; = 0. Putting dy = —dy = k and integrating (5.11) we find

1
f(I) =kln Co COS(*@ZZJ + Cl) , Co € R*. (513)

5.1. Translation surfaces of type 5 in L?. In this paragraph we explore
the classification of the translation surfaces M? of type 5 satisfying (5.1).
Then (5.7) can be rewritten as

Gyy _ 1

95 Kk
A simple integration implies that there exist (co,c3) € R* x R such that
9(y) = —kInjea(y + )|, e €R™.
So

{ f(x) =kIn|cocos(—4x +c1)|, co € R
9(y) = —kInfea(y +c3), 2 €R™.
Substituting these functions in (3.7), we obtain

cocos(—31x + 1)

S : ,y) = (k1
r(z,y) = (kln 2+ )

, L — ay, y)7 Cp, C2 GR* .

Theorem 5.1. Let M? be a translation surface of type 5 given by (3.7) in 3.

Then A Tr; = \iry, (i = 1,2,3) if and only if M? is the surface of Scherk

cocos(—1x + 1)
c2(y + ¢3)

r(z,y) = (kln , T —ay, y), co,c2 €R*, c¢1,c3 €R.

5.2. Translation surfaces of type 6 in L3. In this paragraph we explore
the classification of the translation surfaces M? of type 6 satisfying (5.1).
Then (5.7) can be rewritten as

Gyy

1
a2—1+g§_k'

A simple integration implies that there exist (cq,c3) € R* x R such that

2

9(y) = —kn ez cos ——(y +¢3)

So

f(z)=kln |co cos(—%:c + cl)| , (co,c1) €R* xR
9(y) = —kn ’62 cos v“,i‘l(erCg,)‘, (ca,c3) € R* x R.

Substituting these functions in (3.7), we obtain

cocos(—zx +c1)

Co COS Y “Zil (y +c3)

Sa: r(m7y):(kln , £ —ay, y) .
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Theorem 5.2. Let M? be a translation surface of type 6 given by (3.7) in 3.
Then A yr; = \iry, (i = 1,2,3) if and only if M? is the surface of Scherk

cocos(—1x + 1)

Va2—1

r(z,y) = (kln
¢z cos Y= (y + c3)

, T —ay, y), co,c2 €R", ¢1,e3 €R.

6. THE EXTRINSIC GEOMETRY OF THE SECOND FUNDAMENTAL FORM
6.1. Translation surfaces that satisfy 2H = aKg.

Definition 6.1 ([5]). A surface of the three dimensional space L3 is said to be
II1— harmonic if it satisfies the condition ATy = 0.

Theorem 6.2 ([21]). Let S, be a translation surface of type 5 or 6 in > whose
Gauss curvature Kg and mean curvature H satisfy bH + cKg = 0 (be # 0).
Then it is congruent to a plane or an open part of it.

In this section we study translation surfaces that satisfy the relation
2H = aKg, a € R. (6.1)

Theorem 6.3. If % =a € R, then

Proof. Equation (6.1) writes as

L+ff a?-l+gy o
fax Gyy w
Differentiating with respect to x and y, we have
1 a2_1—|—g§ _ —a&(afx—i—gy). (6.3)
Jyy yy y ws
From (5.2), (6.2) and (6.3) we have
AT (r,y) = 5
Al py (2, y) = ;?‘;f“ (6.4)
Ao (g, y) = aE(aJ;;Jrgy).
Then
AIIIT(‘T; y) = (AIIIrl (’I, y)7 AIIITZ (lE, y)a AIIITS (’I, y))
aeg
= W(l’ — fu, (afz +9y))
= aeN.
|
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Corollary 6.4. Let M? be a translation surface of type 5 or 6 given by (3.7)
in L3. Then M? is III— harmonic if and only if M? has zero mean curvature.

6.2. The Mean Curvature of the Second Fundamental Form. The sec-
ond fundamental form is an important notion in the classical differential geom-
etry of surfaces.

The second mean curvature H;; of non-degenerate second fundamental form
in Lorentz- Minkowski space L? is defined by [20]. The mean curvature of the
second fundamental form H;y is introduced as a measure for the rate of change
of the IT— area under a normal deformation [12].

The mean curvature of the second fundamental form is defined by

1
Hi =H-— 5A”(ln VIKgl), (6.5)

where A! denotes the Laplacian operator of non-degenerate second fundamen-
tal form, that is,

11

1 0 |
= — -(y/|det TI|LY —
/\det II‘ ; 8uz( | € | auj )7

where (L¥) = (L;;)~!, where L;; are the coefficients of second fundamental
forms 11, and {u'} is rectangular coordinate system in E?.

Definition 6.5. (1) A non developable surface is called 11 — flat if the second
Gaussian curvature vanishes identically.

(2) A non developable surface is called IT — minimal if the second mean
curvature vanishes identically.

Proposition 6.6. Hj; can be equivalently expressed as
H; =H-H, (6.6)

where

g (ML) N (L S M LN L
= W2 \/R y w2 \/R 2] W2 \/? . W2 \/} v/,
There does not exist a polynomial affine translation surface with constant

mean curvature in E? [4].

Proposition 6.7. The second mean Hy; curvature on M? is

1 A 2f//f(4) _ 3f///2 2g//g(4) _ 39///2
Hyp = YE |:W ( f1r3 + g3 (6.7)
ez ((£ag + (=@ (af +)g"
+ae 1 - g’

+4f”(—1—|—a2—|—g'2 +2a29/2+2(1 —a2)2f'2 +4a(1+a2)f/g/)
-‘1-49”(—1+f/2+2a2f12+29/2)]-
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