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Abstract. In this paper we study translation surfaces with the non-

degenerate third fundamental form in Lorentz- Minkowski space L3. As

a result, we classify translation surfaces satisfying an equation in terms

of the position vector field and the Laplace operator with respect to the

third fundamental form III on the surface.
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1. Introduction

Let L3 be the 3-dimensional Lorentz-Minkowski space, that is, the space R3

endowed with the metric

gL(X,X) = dx2 + dy2 − dz2,

where X = (x, y, z) ∈ R3.
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For two vectors V = (v1, v2, v3) and W = (w1, w2, w3) in L3 the Lorentz

cross product of X and Y is defined by

V ∧W = (v2w3 − v3w2, v3w1 − v1w3,−v1w2 + v2w1) .

Assume r : M2 → L3 is an isometric immersion of M2 into L3. Then the

position vector of M2 in L3 satisfies [7]

∆r = −2H, (1.1)

where H is the mean curvature vector of M2 in L3. It follows from (1.1) that

M2 is minimal in L3 if and only if the immersion r is harmonic.

The notion of finite type immersion of submanifolds of a Euclidean space

has been widely used in classifying and characterizing well known Riemannian

submanifolds [6]. B.-Y. Chen posed the problem of classifying the finite type

submanifolds in the 3-dimensional Euclidean space E3. These can be regarded

as a generalization of minimal submanifolds.

The notion of finite type immersion has played an important role in classi-

fying and characterizing various submanifolds in Euclidean space.

Since then the theory of submanifolds of finite type has been studied by

many geometers.

In [9] F. Dillen, W. Goemans, I. Van de Woestyne have derived a classifica-

tion of translation surfaces in E3 and E3
1, satisfying the Weingarten condition.

A well known result due to Takahashi [18] states that minimal surfaces and

spheres are the only surfaces in E3 satisfying the condition∆r = λr, λ ∈ R.
In [11] Ferrandez, Garay and Lucas proved that the surfaces of E3 satisfying

∆H = AH, A ∈Mat(3, 3),

are either minimal, or an open piece of sphere or of a right circular cylinder.

In [10] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in

E3 satisfying

∆r = Ar +B, A ∈Mat(3, 3), B ∈Mat(3, 1),

are the minimal surfaces, the spheres and the circular cylinders.

The authors [2] classified the factorable surfaces in the three-dimensional Eu-

clidean and Lorentzian spaces, whose component functions are eigenfunctions

of their Laplace operator.

M. E. Aydin studied constant curvatures of translation surfaces in the three

dimensional simply Isotropic space [1]. Also, Y. Yuan and H. L. Liu dealth with

translation surfaces of some new types in 3-Minkowski space [21]. B. Bukcu,

M. K. Karacan and D. W. Yoon, classified translation surfaces of Type 2 in

the three dimensional simply isotropic space I13 satisfying ∆Jxi = λixi, J = I

, II , III, where λi ∈ R. ∆J denotes the Laplace operator with respect to the

fundamental forms I , II and III [5].
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In I13, when the generating curves lie in perpendicular planes, three types of

translation surfaces exist [5, 15].

Type 1: The surface M2 is parametrized by

r(u, v) = (u, v, f(u) + g(v)),

and the translated curves are (u, 0, f(u)), (0, v, g(v)).

Type 2: The surface M2 is parametrized by

r(u, v) = (u, f(u) + g(v), v),

and the translated curves are (u, f(u), 0), (0, g(v), v).

Type 3: The surface M2 is parametrized by

r(u, v) =
1

2
(f(u) + g(v), u− v + π, u+ v),

and the translated curves are 1
2 (f(u), u+ π

2 , u−
π
2 ), (g(v), π2 − v,

π
2 + v).

In [17] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos classified and

proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski

space E3
1 satisfying

∆III−→r = A−→r
are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or

imaginary radius. S. Stamatakis and H. Al-Zoubi in [16] classified the surfaces

of revolution with non zero Gaussian curvature in E3 under the condition

∆IIIr = Ar, A ∈Mat(3,R).

In [8] M. Choi and D. W. Yoon studied the helicoidal surfaces with the

non-degenerate third fundamental form in Minkowski 3-space.

Recently, the authors [3] studied the translation surfaces in the 3-dimensional

Euclidean and Lorentz-Minkowski space under the condition ∆IIIri = µiri,

µi ∈ R, where ∆III denotes the Laplacian of the surface with respect to the

third fundamental form III.

In this paper we study translation surfaces with the non-degenerate third

fundamental form in Lorentz- Minkowski space L3. As a result, we classify

translation surfaces satisfying an equation in terms of the position vector field

and the Laplace operator with respect to the third fundamental form III on

the surface.

2. Preliminaries

A submanifold M2 of a 3-dimensional Euclidean space E3 is said to be of

finite type if each component of its position vector field r can be written as a

finite sum of eigenfunctions of the Laplacian ∆ of M2, that is, if

r = r0 +

k∑
i=1

ri,
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where ri are E3 -valued eigenfunctions of the Laplacian of (M2, r) [6]:

∆ri = λiri, λi ∈ R, i = 1, 2, .., k.

If λi are different, then M2 is said to be of k-type.

The coefficients of the first fundamental form and the second fundamental

form are

E = g(ru, ru), F = g(ru, rv), G = g(rv, rv);

L = g(ruu,N), M = g(ruv,N), N = g(rvv,N),

where ru = ∂r
∂u , rv = ∂r

∂v and N is the unit normal vector to M2.

In the classical literature, one write the third fundamental form as

III = e11du
2 + 2e12dudv + e22dv

2.

The Laplace-Beltrami operator of a smooth function ϕ : M2 → R, (u, v) 7→
ϕ(u, v) with respect to the first fundamental form of the surface M2 is the

operator ∆, defined by

∆ϕ =
−1√

|EG− F 2|

[
∂

∂u

(
Gϕu − Fϕv√
|EG− F 2|

)
+

∂

∂v

(
Eϕv − Fϕu√
|EG− F 2|

)]
.

The second Beltrami differential operator with respect to the third funda-

mental form III is defined by

∆III =
−1√
|e|
( ∂

∂xi
(
√
|e|eij ∂

∂xj
)
)
, (2.1)

where e = det(eij) and eij denote the components of the inverse tensor of eij .

If r = (r1, r2, r3) is a function of class C2 then we set

∆IIIr = (∆IIIr1,∆
IIIr2,∆

IIIr3).

The mean curvatureH and the Gauss curvatureKG are, respectively, defined

by

H =
EN +GL− 2FM

2(EG− F 2)

and

KG =
LN −M2

EG− F 2
.

3. Translation surfaces of some new types in L3

The study of the translation surfaces in L3, H. Liu [13] investigated the

translation surfaces with constant mean curvature or constant Gauss curvature.

In [19] I. V. de Woestijne studied minimal translation surfaces.
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Definition 3.1. A surface M2 in L3 is called a translation surface if it is given

by the graph

z(u, v) = f(u) + g(v),

where f and g are smooth functions on some interval of R.

A minimal translation surface in a 3-dimensional Euclidean space E3 must

be a plane or a Scherk surface which is the graph of the function

z(u, v) =
1

α
log |cos(αu)| − 1

α
log |cos(αv)| ,

where α is a non-zero constant.

In 3-dimensional Minkowski space L3, according to the spacelike direction,

timelike direction and lightlike direction, the translation surfaces can be con-

sidered belonging to

six types [21].

Type 1. Along spacelike direction and spacelike direction;

Type 2. Along spacelike direction and timelike direction;

Type 3. Along lightlike direction and lightlike direction;

Type 4. Along lightlike direction and spacelike direction;

Type 5. Along timelike direction and lightlike direction;

Type 6. Along timelike direction and timelike direction.

Let M2 be a 2-dimensional surface, of the 3-dimensional Minkowski space

L3. Using the standard coordinate system of L3 we denote the parametric

representation of the surface r(u, v) by

r(u, v) = (r1(u, v), r2(u, v), r3(u, v)).

Translation surfaces Sa of types 5 and 6 can be written as [21]

Sa : r(u, v) = (r1(u, v), r2(u, v), r3(u, v)) = (f(u+ av) + g(v), u, v) . (3.1)

(i) When |a| = 1, the surfaces Sa is translation surface of type 5.

(ii) When |a| > 1, the surfaces Sa is translation surface of type 6.

The coefficients of the first fundamental form of the surface Sa are:

E = 1 + f2u , F = fu(afv + gv), G = (afv + gv)
2 − 1. (3.2)

We define smooth function W as

W =
√
ε(EG− F 2) =

√
ε((afv + gv)2 − f2u − 1),

where ε = ±1.

The unit normal vector of M2 is given by

N =
1

W
(1,−fu, afv + gv).

Then the coefficients of the second fundamental form of the surface Sa are:

L =
fuu
W

, M =
afuv
W

, N =
a2fvv + gvv

W
. (3.3)
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From these we find that the mean curvature H and the curvature KG of

(3.1) are given by

H =
(1 + f2u)(a2fvv + gvv)− 2afufuv(afv + gv) + fuu((afv + gv)

2 − 1)

2W 3
(3.4)

and

KG =
fuu(a2fvv + gvv)− a2f2uv

W 4
. (3.5)

By a transformation {
x = u+ av

y = v,
(3.6)

and ∂(x,y)
∂(u,v) 6= 0.

Sa : r(x, y) = (f(x) + g(y), x− ay, y) . (3.7)

From (3.7) we have

E = 1 + f2x , F = −a+ fxgy, G = −1 + a2 + g2y.

The unit normal vector of M2 is given by

N =
1

W
(1,−fx, afx + gy).

The coefficients of the second fundamental form of the surface Sa are:

L =
fxx
W

, M = 0, N =
gyy
W

.

From (3.4) and (3.5) we get

H =
(1 + f2x)gyy + (−1 + a2 + g2y)fxx

2W 3
(3.8)

and

KG =
fxxgyy
W 4

, (3.9)

where W =
√
ε((afx + gy)2 − f2x − 1).

The components of the third fundamental form of the surface M2 is given

by

e11 = gL(
∂N

∂x
,
∂N

∂x
) =

εf2xxG

W 4
, e12 = gL(

∂N

∂x
,
∂N

∂y
) = −εfxxgyyF

W 4
,(3.10)

e22 = gL(
∂N

∂y
,
∂N

∂y
) =

εg2yyE

W 4
,

hence √
|e| = KGW,

where ε = ±1.
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4. Translation surfaces of type 5 in E3
1 satisfying ∆ri = λiri

In this part we explore the classification of the translation surfaces M2 of

some new types in E3
1 satisfying the condition ∆ri = λiri. The Laplacian ∆ of

M2 can be expressed as follows:

∆ϕ =
−ε
W 3

[Wε(Gϕxx + Eϕyy − 2Fϕxy) +Q(x, y)ϕx + P (x, y)ϕy] , (4.1)

where

Q(x, y) = H1(fx−a(afx+gy)), P (x, y) = −H1(afx+gy), H1 = EN+GL−2FM.

We have the following

Theorem 4.1. Let M2 be an affine translation surface given by (3.1) in E3
1.

Then M2 satisfies the equation ∆ri = λiri (i = 1, 2, 3) if and only if one of the

following statement is true:

1) M2 has zero mean curvature everywhere.

2) M2 is parametrized as

r(u, v) =

(
ελ3v

√
−λ3v2 − c

λ1
√
−λ3v2 − c+ 1

, u, v

)
, λ3y

2 + c < 0.

5. Translation surfaces in L3 satisfying ∆IIIri = λiri

In this part we explore the classification of the translation surfaces M2 of

some new types in L3 satisfying the condition

∆IIIri = λiri. (5.1)

By a straightforward computation, the Laplacian ∆III of the third funda-

mental form III on M with the help of (3.10) and (2.1) turns out to be

∆III = −W 2

((
1 + f2x
f2xx

)
∂2

∂x2
+

(
−1 + a2 + g2y

g2yy

)
∂2

∂y2
+ 2

(
−a+ fxgy
fxxgyy

)
∂2

∂x∂y

+
1

fxx

(
1 + f2x
fxx

)
x

∂

∂x
+

1

gyy

(
−1 + a2 + g2y

gyy

)
y

∂

∂y

 . (5.2)

By using (5.1) and (5.2) we have the following equations

1 + f2x
fxx

+
a2 − 1 + g2y

gyy
+

fx
fxx

(
1 + f2x
fxx

)
x

+
gy
gyy

(
a2 − 1 + g2y

gyy

)
y

= −λ1(f + g)

W 2

(5.3)

1

fxx

(
1 + f2x
fxx

)
x

− a

gyy

(
a2 − 1 + g2y

gyy

)
y

= −λ2(x− ay)

W 2
(5.4)

1

gyy

(
a2 − 1 + g2y

gyy

)
y

= −λ3y
W 2

. (5.5)
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Differentiating (5.5) with respect to x we obtain

fxx

 1

gyy

(
a2 − 1 + g2y

gyy

)
y

 (a2fx + agy − fx) = 0. (5.6)

If a2fx + agy − fx = 0, then fxx = 0 and gyy = 0, it is a contradiction.

Then there exists d1 ∈ R∗ such that

a2 − 1 + g2y
gyy

= d1. (5.7)

We get also, by the equation (5.5), λ3 = 0.

Then, (5.3) and (5.4) can be written as the forms:

1 + f2x
fxx

+
fx
fxx

(
1 + f2x
fxx

)
x

+ d1 = −λ1(f + g)

W 2
(5.8)

1

fxx

(
1 + f2x
fxx

)
x

= −λ2(x− ay)

W 2
. (5.9)

Differentiating (5.9) with respect to y, we have

2ε

fxx

(
1 + f2x
fxx

)
x

gyy(afx + gy) = aλ2.

Using (5.7), we have

2ε

fxx

(
1 + f2x
fxx

)
x

(afx + gy)(−1 + a2 + g2y) = d1aλ2.

Taking the derivative with respect to y, we have

2ε

fxx

(
1 + f2x
fxx

)
x

gyy(−1 + a2 + 3g2y + 2afxgy) = 0. (5.10)

We discuss by cases:

Case 1. If −1 + a2 + 3g2y + 2afxgy = 0, then fxx = 0, a contradiction.

Case 2. If
(

1+f2
x

fxx

)
x

= 0. Then (5.9) implies λ2 = 0.

Then there exists d2 ∈ R∗ such that

1 + f2x
fxx

= d2. (5.11)

Substituting in (5.8), we have

−W 2(d1 + d2) = λ1(f + g). (5.12)

Let d1 + d2 6= 0. On differentiating (5.12), with respect to y, we find

afx = −gy −
λ1gy

2(d1 + d2)εgyy
,
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and so fxx = 0, a contradiction. So, it is d1 + d2 = 0. Consequently, from

(5.12), it is λ1 = 0. Putting d1 = −d2 = k and integrating (5.11) we find

f(x) = k ln

∣∣∣∣c0 cos(−1

k
x+ c1)

∣∣∣∣ , c0 ∈ R∗. (5.13)

5.1. Translation surfaces of type 5 in L3. In this paragraph we explore

the classification of the translation surfaces M2 of type 5 satisfying (5.1).

Then (5.7) can be rewritten as

gyy
g2y

=
1

k
.

A simple integration implies that there exist (c2, c3) ∈ R∗ × R such that

g(y) = −k ln |c2(y + c3)| , c2 ∈ R∗.

So {
f(x) = k ln

∣∣c0 cos(− 1
kx+ c1)

∣∣ , c0 ∈ R∗

g(y) = −k ln |c2(y + c3)| , c2 ∈ R∗.
Substituting these functions in (3.7), we obtain

Sa : r(x, y) = (k ln

∣∣∣∣c0 cos(− 1
kx+ c1)

c2(y + c3)

∣∣∣∣ , x− ay, y), c0, c2 ∈ R∗ .

Theorem 5.1. Let M2 be a translation surface of type 5 given by (3.7) in L3.

Then ∆IIIri = λiri, (i = 1, 2, 3) if and only if M2 is the surface of Scherk

r(x, y) = (k ln

∣∣∣∣c0 cos(− 1
kx+ c1)

c2(y + c3)

∣∣∣∣ , x− ay, y), c0, c2 ∈ R∗, c1, c3 ∈ R.

5.2. Translation surfaces of type 6 in L3. In this paragraph we explore

the classification of the translation surfaces M2 of type 6 satisfying (5.1).

Then (5.7) can be rewritten as

gyy
a2 − 1 + g2y

=
1

k
.

A simple integration implies that there exist (c2, c3) ∈ R∗ × R such that

g(y) = −k ln

∣∣∣∣∣c2 cos

√
a2 − 1

k
(y + c3)

∣∣∣∣∣ .
So {

f(x) = k ln
∣∣c0 cos(− 1

kx+ c1)
∣∣ , (c0, c1) ∈ R∗ × R

g(y) = −k ln
∣∣∣c2 cos

√
a2−1
k (y + c3)

∣∣∣ , (c2, c3) ∈ R∗ × R.

Substituting these functions in (3.7), we obtain

Sa : r(x, y) = (k ln

∣∣∣∣∣ c0 cos(− 1
kx+ c1)

c2 cos
√
a2−1
k (y + c3)

∣∣∣∣∣ , x− ay, y) .
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Theorem 5.2. Let M2 be a translation surface of type 6 given by (3.7) in L3.

Then ∆IIIri = λiri, (i = 1, 2, 3) if and only if M2 is the surface of Scherk

r(x, y) = (k ln

∣∣∣∣∣ c0 cos(− 1
kx+ c1)

c2 cos
√
a2−1
k (y + c3)

∣∣∣∣∣ , x− ay, y), c0, c2 ∈ R∗, c1, c3 ∈ R.

6. The Extrinsic Geometry of the Second Fundamental Form

6.1. Translation surfaces that satisfy 2H = αKG.

Definition 6.1 ([5]). A surface of the three dimensional space L3 is said to be

III− harmonic if it satisfies the condition ∆IIIr = 0.

Theorem 6.2 ([21]). Let Sa be a translation surface of type 5 or 6 in L3 whose

Gauss curvature KG and mean curvature H satisfy bH + cKG = 0 (bc 6= 0).

Then it is congruent to a plane or an open part of it.

In this section we study translation surfaces that satisfy the relation

2H = αKG, α ∈ R. (6.1)

Theorem 6.3. If 2H
KG

= α ∈ R, then

∆IIIr(x, y) =
2H

KG
N.

Proof. Equation (6.1) writes as

1 + f2x
fxx

+
a2 − 1 + g2y

gyy
=

α

W
.

Differentiating with respect to x and y, we have

1

fxx

(
1 + f2x
fxx

)
x

=
−αε(agy + (a2 − 1)fx)

W 3
(6.2)

1

gyy

(
a2 − 1 + g2y

gyy

)
y

=
−αε(afx + gy)

W 3
. (6.3)

From (5.2), (6.2) and (6.3) we have
∆IIIr1(x, y) = αε

W

∆IIIr2(x, y) = −αεfx
W

∆IIIr3(x, y) =
αε(afx+gy)

W .

(6.4)

Then

∆IIIr(x, y) = (∆IIIr1(x, y), ∆IIIr2(x, y), ∆IIIr3(x, y))

=
αε

W
(1, − fx, (afx + gy))

= αεN.

�
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Corollary 6.4. Let M2 be a translation surface of type 5 or 6 given by (3.7)

in L3. Then M2 is III− harmonic if and only if M2 has zero mean curvature.

6.2. The Mean Curvature of the Second Fundamental Form. The sec-

ond fundamental form is an important notion in the classical differential geom-

etry of surfaces.

The second mean curvature HII of non-degenerate second fundamental form

in Lorentz- Minkowski space L3 is defined by [20]. The mean curvature of the

second fundamental form HII is introduced as a measure for the rate of change

of the II− area under a normal deformation [12].

The mean curvature of the second fundamental form is defined by

HII = H − 1

2
∆II(ln

√
|KG|), (6.5)

where ∆II denotes the Laplacian operator of non-degenerate second fundamen-

tal form, that is,

∆II =
1√
|det II|

∑
i,j

∂

∂ui
(
√
|det II|Lij ∂

∂uj
),

where (Lij) = (Lij)
−1, where Lij are the coefficients of second fundamental

forms II, and
{
ui
}

is rectangular coordinate system in E3.

Definition 6.5. (1) A non developable surface is called II−flat if the second

Gaussian curvature vanishes identically.

(2) A non developable surface is called II − minimal if the second mean

curvature vanishes identically.

Proposition 6.6. HII can be equivalently expressed as

HII = H − H̃, (6.6)

where

H̃ =

(
M

W 2

(
1√
K

)
y

− N

W 2

(
1√
K

)
x

)
x

+

(
M

W 2

(
1√
K

)
x

− L

W 2

(
1√
K

)
y

)
y

.

There does not exist a polynomial affine translation surface with constant

mean curvature in E3 [4].

Proposition 6.7. The second mean HII curvature on M2 is

HII = − 1

8W 3

[
W 4

(
2f ′′f (4) − 3f ′′′2

f ′′3
+

2g′′g(4) − 3g′′′2

g′′3

)
(6.7)

+4εW 2

(
(−ag′ + (1− a2)f ′)f ′′′

f ′′
− (af ′ + g′)g′′′

g′′

)
+4f ′′(−1 + a2 + g′2 + 2a2g′2 + 2(1− a2)2f ′2 + 4a(1 + a2)f ′g′)

+4g′′(−1 + f ′2 + 2a2f ′2 + 2g′2)
]
.

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

16
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
19

 ]
 

                            11 / 12

http://dx.doi.org/10.52547/ijmsi.17.1.165
http://ijmsi.com/article-1-1400-en.html


176 B. Senoussi, M. Bekkar

Acknowledgments

The authors would like to express their sincere gratitude to the referee for

the valuable suggestions which improve the paper.

References

1. M. E. Aydin, A Generalization of Translation Surfaces with Constant Curvature in the

Isotropic Space, J. Geom., 107, (2016), 603-615.

2. M. Bekkar, B. Senoussi, Factorable Surfaces in the Three-dimensional Euclidean and

Lorentzian Spaces Satisfying ∆ri = λiri, J. Geom., 103, (2012), 17 - 29.

3. M. Bekkar, B. Senoussi, Translation Surfaces in the 3-dimensional Space Satisfying

∆IIIri = µiri, J. Geom., 103, (2012), 367-374.

4. H. G. Bozok, M. Ergüt, Polynomial Affine Translation Surfaces in Euclidean 3-Space,

Bol. Soc. Paran. Mat., 373, (2019), 195-202.

5. B. Bukcu, M. K. Karacan, D. W. Yoon, Translation Surfaces of Type 2 in the Three

Dimensional Simply Isotropic Space I13., Bull. Korean Math. Soc., 54, (2017), 953 - 965.

6. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific,

Singapore, (second edition) 2015.

7. B.-Y. Chen, Finite Type Submanifolds in Pseudo-Euclidean Spaces and Applications,

Kodai Math. J., 6, (1985), 358-374.

8. M. Choi, D. W. Yoon, Helicoidal Surfaces of the Third Fundamental Form in Minkowski

3-space, Bull. Korean Math. Soc., 52, (2015), 1569-1578.

9. F. Dillen, W. Goemans, I. Van de Woestyne, Translation Surfaces of Weingarten Type

in 3-space, Bull. Transilv. Univ. Brasov., 15, (2008) 109-122.

10. F. Dillen, J. Pas, I. Verstraelen, On Surfaces of Finite Type in Euclidean 3-space, Kodai

Math. J., 13, (1990), 10-21.

11. A. Ferrandez, O. J. Garay, P. Lucas, On a Certain Class of Conformally Flat Euclidean

Hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry,

Berlin. 1990.

12. S. Haesen, S. Verpoort, L. Verstraelen, The Mean Curvature of the Second Fundamental

Form, Houston J. of Math., 34(3), (2008), 703-719.

13. H. Liu, Translation Surfaces with Constant Mean Curvature in 3-dimensional Spaces, J.

Geom., 64, (1999), 141-149.

14. B. Senoussi, M. Bekkar, Helicoidal Surfaces in the 3-dimensional Lorentz - Minkowski

Space E3
1 satisfying ∆IIIr = Ar, Tsukuba J. Math., 37, (2013), 339 - 353.

15. Z. M. Sipus, Translation Surfaces of Constant Curvatures in a Simply Isotropic Space,

Period Math. Hungar., 68, (2014), 160 - 175.

16. S. Stamatakis, H. Al-Zoubi, Surfaces of Revolution Satisfying ∆IIIx = Ax, J. Geom.

Graph, 14, (2010), 181-186.

17. G. Kaimakamis, B. J. Papantoniou, K. Petoumenos, Surfaces of Revolution in the 3-

dimensional Lorentz-Minkowski Space E3
1 Satisfying ∆III−→r = A−→r , Bull. Greek. Math.

Soc., 50, (2005), 76 - 90.

18. T. Takahashi, Minimal Immersions of Riemannian Manifolds, J. Math. Soc. Japan, 18,

(1966), 380-385.

19. I. V. de Woestijne, Minimal Surfaces of 3-dimensional Minkowski Space, in Geometry

and Topology of Submanifolds II, World Scientific Publ., (1990), 344-369.

20. S. Verpoort, The Geometry of the Second Fundamental Form: Curvature Properties

and Variational Aspects, PhD. Thesis, Katholieke Universiteit Leuven, Belgium, 2008.

21. Y. Yuan and H. Liu, Some New Traslation Surfaces in 3 -Minkowski space, Journal of

Mathematical Research and Exposition, 31, (2011), 1123-1128.

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

16
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
19

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            12 / 12

http://dx.doi.org/10.52547/ijmsi.17.1.165
http://ijmsi.com/article-1-1400-en.html
http://www.tcpdf.org

