Iranian Journal of Mathematical Sciences and Informatics

Vol. 17, No. 1 (2022), pp 219-225 DOI: 10.52547/ijmsi.17.1.219

Spaceability on Morrey Spaces

Yoshihiro Sawano^{a,b}, Seyyed Mohammad Tabatabaie^{c*}

^aDepartment of Mathematics, Tokyo Metropolitan University, 1-1,
 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
 ^bDepartment of Mathematics Analysis and the Theory of functions, Peoples'
 Friendship University of Russia, Moscow, Russia
 ^cDepartment of Mathematics, University of Qom, Qom, Iran

E-mail: yoshihiro-sawano@celery.ocn.ne.jp E-mail: sm.tabatabaie@qom.ac.ir

ABSTRACT. In this paper, as a main result for Morrey spaces, we prove that the set $\mathcal{M}_q^p(\mathbb{R}^n) \setminus \bigcup_{q < r \leq p} \mathcal{M}_r^p(\mathbb{R}^n)$ is spaceable in $\mathcal{M}_q^p(\mathbb{R}^n)$, where $0 < q < p < \infty$.

Keywords: Spaceability, Morrey spaces, Banach spaces.

2000 Mathematics subject classification: 42B35, 46E30.

1. Introduction

Let $0 < q \le p < \infty$. Define the Morrey $(quasi-)norm \| \cdot \|_{\mathcal{M}_q^p}$ by $\|f\|_{\mathcal{M}_q^p} \equiv \sup \left\{ |Q|^{\frac{1}{p} - \frac{1}{q}} \|f\|_{L^q(Q)} : Q \text{ is a cube in } \mathbb{R}^n \right\}$

for a measurable function f, where a cube is defined to be the set of the form $\{a+y: a \in \mathbb{R}^n, y \in [0,t]^n\}$ for some $a \in \mathbb{R}^n$ and t > 0. The Morrey space \mathcal{M}_q^p is the set of all measurable functions f for which $||f||_{\mathcal{M}_q^p}$ is finite. Morrey spaces date back to 1938, when C.B. Morrey considered elliptic differential equations

date back to 1938, when C.B. Morrey considered elliptic differential equations and discussed continuity of the solutions using a lemma [7]. His lemma was refined by Peetre [8]. Morrey's lemma gave rise to the theory of function spaces;

Received 29 August 2018; Accepted 27 April 2019 ©2022 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

see [8] and [10]. The function spaces dealt with are called Morrey spaces. Let $0 < q < p < \infty$. For each $r \in (q, p]$ the set \mathcal{M}_r^p is a proper subset of \mathcal{M}_q^p [4, 9]. In this paper, we show that the difference of these two sets is large enough. Precisely, by a technical lemma we prove:

Theorem 1.1. If 0 < q < p, then $\mathcal{M}_q^p \setminus \bigcup_{q < r \leq p} \mathcal{M}_r^p$ is a spaceable subset of \mathcal{M}_q^p .

Another different proof will also be given via [6, Theorem 3.3]. We recall that a subset S of a topological vector space X is called *spaceable* if $S \cup \{0\}$ contains a closed infinite-dimensional linear subspace of X. The concepts spaceability and lineability were introduced by the paper [1] and then have been studied on different kinds of function or sequence spaces (see [5, 6]). In particular, for spaceability of the difference of Lebesgue spaces (see [2, 3, 11]).

2. Main Result

Let p > q > 0 and R > 1 be fixed so that

$$(R+1)^{-\frac{1}{p}} = 2^{\frac{1}{q}}(1+R)^{-\frac{1}{q}}. (2.1)$$

For a vector $\varepsilon \in \{0,1\}^n$, we define an affine transformation T_ε by

$$T_{\varepsilon}(x) \equiv \frac{1}{R+1}x + \frac{R}{R+1}\varepsilon \quad (x \in \mathbb{R}^n).$$

Let $E_0 := [0,1]^n$. Suppose that we have defined $E_0, E_1, E_2, \dots, E_j$. Define

$$E_{j+1} := \bigcup_{\varepsilon \in \{0,1\}^n} T_{\varepsilon}(E_j)$$

and

$$E_{j,0} := [0, (1+R)^{-j}]^n.$$

The following technical lemma is proved in [10, Proposition 4.1]. Here, for the sake of convenience of readers, we reproduce the proof.

Lemma 2.1. Under above notations we have

$$\|\chi_{E_j}\|_{\mathcal{M}_q^p} \sim (1+R)^{-j\frac{n}{p}} = \|\chi_{E_{j,0}}\|_{\mathcal{M}_q^p} = \|\chi_{E_{j,0}}\|_p = \|\chi_{E_j}\|_q,$$
 (2.2)

where the implicit constants in \sim does not depend on j but can depend on p and q and $\|\cdot\|_{\mathcal{M}^p_c}$ is the Morrey norm.

Proof. A direct calculation shows that

$$\|\chi_{E_i}\|_{\mathcal{M}_a^p} \ge \|\chi_{E_{i,0}}\|_{\mathcal{M}_a^p} = (1+R)^{-j\frac{n}{p}} = \|\chi_{E_{i,0}}\|_p = \|\chi_{E_i}\|_q$$

Thus, we need to show

$$\|\chi_{E_j}\|_{\mathcal{M}_q^p} \lesssim \|\chi_{E_{j,0}}\|_p.$$

Let us calculate

$$\|\chi_{E_j}\|_{\mathcal{M}_q^p} \sim \sup_{S \in \mathcal{Q}} |S|^{\frac{1}{p} - \frac{1}{q}} |S \cap E_j|^{\frac{1}{q}},$$

where \mathcal{Q} denotes the set of all cubes. Fix $j \in \mathbb{N}$. Let us temporally say that $Q \in \mathcal{Q}$ is wasteful, if there exists a cube $S \in \mathcal{Q}$ such that

$$|Q|^{\frac{1}{p}-\frac{1}{q}}|Q\cap E_j|^{\frac{1}{q}} < |S|^{\frac{1}{p}-\frac{1}{q}}|S\cap E_j|^{\frac{1}{q}}.$$

Thus by definition, if $\ell(Q) := |Q|^{\frac{1}{n}} > 1$, then

$$|Q|^{\frac{1}{p}-\frac{1}{q}}|Q\cap E_j|^{\frac{1}{q}}<|E_j|^{\frac{1}{q}}=|[0,1]^n|^{\frac{1}{p}-\frac{1}{q}}|[0,1]^n\cap E_j|^{\frac{1}{q}}.$$

In addition, if the side-length of a cube Q is less than $(R+1)^{-j}$, then it is wasteful. Indeed, then the equalities

$$\sup \left\{ |Q|^{\frac{1}{p} - \frac{1}{q}} |Q \cap E_{j}|^{\frac{1}{q}} : Q \in \mathcal{Q}, |Q| \le (R+1)^{-jn} \right\} \\
= \sup \left\{ |Q|^{\frac{1}{p} - \frac{1}{q}} |Q \cap E_{j}|^{\frac{1}{q}} : Q \in \mathcal{Q}, Q \subset E_{j} \right\} \\
= \sup \left\{ |Q|^{\frac{1}{p}} : Q \in \mathcal{Q}, Q \subset E_{j} \right\} \\
= |E_{j,0}|^{\frac{1}{p}}$$

hold. Here, we obtain the first equality by translating Q so that Q which is included in $E_{j,0}$. This calculation shows that

$$|Q|^{\frac{1}{p}-\frac{1}{q}}|Q\cap E_j|^{\frac{1}{q}} < |E_{j,0}|^{\frac{1}{p}}$$

for any such cube. Thus, if the cube Q is not wasteful, then $(R+1)^{-j} \le \ell(Q) \le 1$. So, there exists $k \in \{1, 2, ..., n\}$ such that $(R+1)^{-kn} \le |Q| \le (R+1)^{-(k-1)n}$. In this case, since any connected component P of E_k satisfies $(R+1)^{-kn} = |P| \le |Q| \le (R+1)^{-(k-1)n}$, 3Q contains a connected component of E_k . Hence, it follows that

$$\|\chi_{E_j}\|_{\mathcal{M}_q^p}$$

 $\sim \sup\{|Q|^{\frac{1}{p}-\frac{1}{q}}|Q\cap E_j|^{\frac{1}{q}}: Q \text{ contains a connected component of } E_j \}.$

Let S be a cube which contains a connected component of E_j and is not wasteful. By symmetry, we may assume $S = I \times I \times \cdots \times I$ for some interval I. We define

$$S^* := \operatorname{co}\left(\bigcup \left\{W : W \text{ is a connected component of } E_j \text{ intersecting } S\right\}\right)$$

where co(A) stands for the smallest convex set containing a set A. Then a geometric observation shows that S^* engulfs k^n connected component of E_j for some $1 \le k \le 2^j$. Take an integer l such that $2^{l-1} \le k \le 2^l$. Then we have

$$|S^* \cap E_j| = k^n (1+R)^{-jn}, \quad |S^*| \sim (1+R)^{-jn+ln}.$$

Consequently, from (2.1) we have

$$|S^*|^{\frac{1}{p} - \frac{1}{q}}|S^* \cap E_j|^{\frac{1}{q}} \sim 2^{\frac{\ln q}{q}} (1+R)^{-\frac{jn}{q}} (1+R)^{(-j+l)\left(\frac{n}{p} - \frac{n}{q}\right)}$$

$$= 2^{\frac{\ln q}{q}} (1+R)^{-j\frac{n}{p} + \ln\left(\frac{1}{p} - \frac{1}{q}\right)}$$

$$= 2^{\frac{\ln q}{q}} (1+R)^{\ln\left(\frac{1}{p} - \frac{1}{q}\right)} (1+R)^{-j\frac{n}{p}} = (1+R)^{-j\frac{n}{p}}$$

Therefore, (2.2) is obtained.

So, we can say that the Morrey norm $\|\cdot\|_{\mathcal{M}_q^p}$ reflects local regularity of the functions more precisely than the Lebesgue norm $\|\cdot\|_p$.

A chain of equalities in (2.2) is the motivation of choosing R in (2.1).

Remark 2.2. In Lemma 2.1, if one defines $F_j := \{x \in \mathbb{R}^n : (R+1)^{-j}x \in E_j\}$, then $\{F_j\}_{j=1}^{\infty}$ is an increasing sequence of sets and each F_j is made up of disjoint union of cubes of length 1, $\|\chi_{F_j}\|_{\mathcal{M}_q^p} \sim 1$, and each component of F_j is a cube of size 1.

Proposition 2.3. Let $0 < q < r \le p$. Then $\|\chi_{F_j}\|_{\mathcal{M}_r^p} \ge \left(\frac{1+R}{2}\right)^{\left(\frac{n}{q}-\frac{n}{r}\right)j}$, and so that $\lim_{j\to\infty} \|\chi_{F_j}\|_{\mathcal{M}_r^p} = \infty$.

Proof. Simply use

$$\|\chi_{F_j}\|_{\mathcal{M}_r^p} \ge (1+R)^{\frac{jn}{p}-\frac{jn}{r}} |F_j|^{\frac{1}{r}} = (1+R)^{\frac{jn}{q}-\frac{jn}{r}} |F_j|^{\frac{1}{r}-\frac{1}{q}} = \left(\frac{1+R}{2}\right)^{(\frac{n}{q}-\frac{n}{r})j}.$$

Now, we prove the main result of this paper.

Proof of Theorem 1.1. Under above notations, put

$$F := \bigcup_{j=1}^{\infty} F_j. \tag{2.3}$$

Then $\chi_F \in \mathcal{M}_q^p$. For each $j = 1, 2, 3, \ldots$ let us define

$$g_i(x) := \chi_F((R+1)^{-j-1}x) - \chi_F((R+1)^{-j}x) \qquad (x \in \mathbb{R}^n),$$

and

$$h_j(x) := \chi_F(R^{-j-1}x) \quad (x \in \mathbb{R}^n).$$

Then by Lemma 2.1 we have $\|g_j\|_{\mathcal{M}_q^p} \sim \|h_j\|_{\mathcal{M}_q^p} < \infty$, while $\|g_j\|_{\mathcal{M}_r^p} \sim \|h_j\|_{\mathcal{M}_r^p} = \infty$ for all $q < r \le p$. We set

$$V := \left\{ \sum_{j=1}^{\infty} \lambda_j g_j : \text{ for all } j, \lambda_j \in \mathbb{C} \right\} \bigcap \mathcal{M}_q^p.$$

Since the convergence with norm of \mathcal{M}_q^p is stronger than the almost everywhere convergence, V is closed in \mathcal{M}_q^p . Also, note that

$$V \cap \bigcup_{q < r \le p} \mathcal{M}_r^p = \{0\},\,$$

since the charactristic function χ_F belongs to the set $\mathcal{M}_q^p \setminus \bigcup_{q < r \leq p} \mathcal{M}_r^p$. Therefore, $\mathcal{M}_q^p \setminus \bigcup_{q < r \leq p} \mathcal{M}_r^p$ is spaceable in \mathcal{M}_q^p .

Here is an alternative proof of Thoerem 1.1 with $q \ge 1$ using a result by Kitson and Timoney [6]. We invoke this result from [6].

Theorem 2.4. [6, Theorem 3.3]. Let Z_m $(m \in \mathbb{N})$ be Banach spaces and X a Fréchet space. Let $T_m : Z_m \to X$ be continuous linear operators and Y the linear span of $\bigcup_{m=1}^{\infty} T_m(Z_m)$. If Y is not closed in X, then the complement $X \setminus Y$ is spaceable.

For a different proof of Theorem 1.1, simply apply Theorem 2.4 with

$$X = \mathcal{M}_q^p, \quad Z_m = \mathcal{M}_{q + \frac{p-q}{m}}^p, \quad T_m = \text{inclusion mapping from } Z_m \text{ to } \mathcal{M}_q^p.$$

We will check the following property of the Morrey space \mathcal{M}_q^p to see that Theorem 2.4 is applicable.

Proposition 2.5. Let $0 < q < p < \infty$. Then $\bigcup_{q < r < p} \mathcal{M}_r^p$ is not closed in \mathcal{M}_q^p .

We to relate the case 0 < q < 1 here. Once this is shown, Theorem 1.1 will be proved with the help of the aforementioned theorem.

Proof. Let F_j be as in Remark 2.2. For each $k \in \mathbb{N}$ define

$$f_k := \sum_{j=1}^k \frac{1}{j^2 \|\chi_{F_j}\|_{\mathcal{M}_q^p}} \chi_{F_j}.$$

Then $(f_k)_{k=1}^{\infty}$ is a Cauchy sequence in \mathcal{M}_q^p . So, $(f_k)_{k=1}^{\infty}$ converges to a function f in \mathcal{M}_q^p since \mathcal{M}_q^p is a Banach space. Note that each $f_k \in L^p \subset \mathcal{M}_r^p$ for all $q < r \le p$. If f is a member in \mathcal{M}_r^p for some $r \in (q, p]$, then

$$\left\{ \frac{1}{j^2 \|\chi_{F_j}\|_{\mathcal{M}_q^p}} \chi_{F_j} \right\}_{j=1}^{\infty}$$

would form a bounded set in \mathcal{M}_r^p since \mathcal{M}_r^p enjoys the lattice property. This is a contradiction to Proposition 2.3.

Downloaded from ijmsi.com on 2025-10-20

3. Appendix

The situation is different from the case of Lebesgue spaces.

Proposition 3.1. Let
$$0 < q < p < \infty$$
. Then $\bigcup_{q < r \le p} \mathcal{M}_r^p$ is not dense in \mathcal{M}_q^p .

Proof. Let F be as in (2.3). We prove that $2\chi_F$ is not in the closure of $\bigcup \mathcal{M}_r^p$ by showing that for every $q < r \le p$, $f \notin \mathcal{M}_r^p$ if $f \in \mathcal{M}_q^p$ satisfies $\|2\chi_F - f\|_{\mathcal{M}_q^p}^p < 1$ 1. Indeed, if K is one of the connected components of F, then $||f||_{L^r(K)} \geq$ $||f||_{L^q(K)} > c_q = (2^{\min(1,q)} - 1)^{\frac{1}{\min(1,q)}}$ since

$$1 > (\|2\chi_F - f\|_{\mathcal{M}_q^p})^{\min(1,q)}$$

$$\geq (\|2 - f\|_{L^q(K)})^{\min(1,q)}$$

$$\geq 2^{\min(1,q)} - (\|f\|_{L^q(K)})^{\min(1,q)}.$$

Thus.

$$||f||_{\mathcal{M}_{r}^{p}} \geq |[0, R^{j}]^{n}|^{\frac{1}{p} - \frac{1}{r}} ||f||_{L^{r}([0, R^{j}]^{n})} \geq c_{q} R^{\frac{jn}{p} - \frac{jn}{r}} |E_{j}|^{\frac{1}{r}} = c_{q} 2^{\frac{jn}{r} - \frac{jn}{q}} R^{\frac{jn}{q} - \frac{jn}{r}}$$
 for all $j \in \mathbb{N}$. Hence, $||f||_{\mathcal{M}_{r}^{p}} = \infty$, or equivalently $f \notin \mathcal{M}_{r}^{p}$.

ACKNOWLEDGMENTS

We would like to thank the referee(s) for careful reading and very good suggestions.

References

- 1. R. M. Aron, V. I. Gurariy, J. B. Seoane-Sepúlveda, Lineability and Spaceability of Sets of Functions on \mathbb{R} , *Proc. Amer. Math. Soc.*, **133**(3), (2005), 795-803.
- 2. G. Botelho, D. Diniz, V. V. Fávaro, D. Pellegrino, Spaceability in Banach and Quasi-Banach Sequence Spaces, Linear Algebra Appl., 434(5), (2011), 1255-1260.
- 3. G. Botelho, V. V. Fávaro, D. Pellegrino, J. B. Seoane-Sepúlveda, $L_p[0,1] \setminus \bigcup_{q>p} L_q[0,1]$ Is Spaceable for Every p > 0, Linear Algebra Appl., 436, (2012), 2963-2965.
- 4. H. Gunawan, D. I. Hakim, M. Idris, Proper Inclusions of Morrey Spaces, Glasnik Mat., **53**(73), (2018), 143-151.
- 5. V. I. Gurariy, L. Quarta, On Lineability of Sets of Continuous Functions, J. Math. Anal. Appl., 294, (2004), 62-72.
- 6. D. Kitson, R. M. Timoney, Operator Ranges and Spaceability, J. Math. Anal. Appl., **378**, (2011), 680-686.
- 7. C. B. Morrey, On the Solutions of Quasi Linear Elliptic Partial Differential Equations, Trans. Amer. Math. Soc., 43, (1938), 126-166.
- 8. J. Peetre, On the Theory of $\mathcal{L}_{p,\lambda}$, J. Func. Anal., 4, (1969), 71-87.
- 9. Y. Sawano, A Non-dense Subspace in \mathcal{M}_q^p with $1 < q < p < \infty$, Trans. A. Razmadze Math. Inst., 171(3), (2017), 379-380.
- 10. Y. Sawano, S. Sugano, H. Tanaka, Generalized Fractional Integral Operators and Fractional Maximal Operators in the Framework of Morrey Spaces, Trans. Amer. Math. Soc., **363**(12), (2011), 6481-6503.

[DOI: 10.52547/ijmsi.17.1.219]

11. S. M. Tabatabaie, B. H. Sadathoseyni, A Spaceability Result in the Context of Hypergroups, *Note Mat.*, **38**(1), (2018), 17-22.