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Abstract. Let R be a commutative ring with identity. A proper submod-

ule N of an R-module M is an n-submodule if rm ∈ N (r ∈ R,m ∈ M)

with r /∈
√

AnnR(M), then m ∈ N . A number of results concerning

n-submodules are given. For example, we give other characterizations of

n-submodules. Also various properties of n-submodules are considered.
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1. Introduction

Throughout this article, R denotes a commutative ring with identity and

all modules are unitary. Also N, Z, and Q will denote, respectively, the

natural numbers, the ring of integers, and the field of rational numbers. If

N is an R-submodule of M , annihilator of R-module
M

N
is defined to be

AnnR(M
N ) = (N :R M) = {r ∈ R : rM ⊆ N}. Also the annihilator of M ,

denoted by AnnR(M), is (0 :R M). Suppose that I is an ideal of R. We denote

the radical of I by
√
I = {a ∈ R : an ∈ I for some n ∈ N}.

A proper submodule N of M is called prime (primary) if rx ∈ N , for r ∈ R
and x ∈ M , implies that either x ∈ N or r ∈ (N :R M) (rn ∈ (N :R M), for
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some n ∈ N)(see [1], [6], [9], [11]).

An R-module M is said to be a multiplication module, if for each submodule

N of M , there is an ideal I of R, such that N = IM . Equivalently, M is a

multiplication module if and only if N = (N :R M)M , for each submodule N

of M [2],[3].

The concepts of n-ideals and n-submodules were introduced in [12]. A proper

ideal I of R is said to be an n-ideal if the condition ab ∈ I with a /∈
√

0 = {a ∈
R : an = 0 for some n ∈ N} implies b ∈ I, for every a, b ∈ R. Also a proper

submodule N of M is called an n-submodule if for a ∈ R, x ∈M , ax ∈ N with

a /∈
√
AnnR(M), then x ∈ N .

In Section 2, we investigate some properties of n-submodules analogous with

n-ideals and also obtain some basic results. Among many results in this article,

it is shown in Theorem 2.2, that a proper submodule N of M is an n-submodule

if and only if N = (N :M a) for every a /∈
√
AnnR(M). In Theorem 2.22, we

show that every n-submodule is a primary submodule. Furthermore, in Theo-

rem 2.27, we characterize torsion-free modules in terms of n-submodules.

2. n-Submodules

Recall that a proper submodule N of a module M over a commutative

ring R is said to be an n-submodule, if for a ∈ R, x ∈ M , ax ∈ N with

a /∈
√
AnnR(M), then x ∈ N .

Example 2.1. (i) Suppose that R is a ring that has only one prime ideal. Then

every proper submodule of R- module R is an n-submodule.

(ii) Z6 as Z-module has not any n-submodule.

Theorem 2.2. Let M be an R-module and N be a proper submodule of M .

Then the following statements are equivalent:

(i) N is an n-submodule of M ;

(ii) N = (N :M a), for every a /∈
√
AnnR(M);

(iii) For any ideal I of R and submodule K of M , IK ⊆ N with I 6⊆
√
AnnR(M)

implies K ⊆ N .

Proof. (i) ⇒ (ii) Let N be an n-submodule of M . For every a ∈ R, the

inclusion N ⊆ (N :M a) always holds. Let a /∈
√
AnnR(M) and x ∈ (N :M a).

Then we have ax ∈ N . Since N is an n-submodule, we conclude that x ∈ N
and thus N = (N :M a).

(ii) ⇒ (iii) Suppose that IK ⊆ N where I 6⊆
√
AnnR(M), for ideal I of R

and submodule K of M . Since I 6⊆
√
AnnR(M), there exists a ∈ I such that

a /∈
√
AnnR(M). Then we have aK ⊆ N , and so K ⊆ (N :M a) = N by (ii).
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(iii) ⇒ (i) Let ax ∈ N with a /∈
√
AnnR(M) for a ∈ R and x ∈ M . It is

sufficient to take I := Ra and K := Rx to prove the result. �

Proposition 2.3. i) If N is an n-submodule of M , then (N :R M) ⊆
√
AnnR(M).

ii) Let {Ni}i∈I be a nonempty set of n-submodules of an R-module M . Then⋂
i∈I Ni is an n-submodule.

iii) Let {Ni}i∈I be a chain of n-submodules of a finitely generated R-module

M . Then
⋃

i∈I Ni is an n-submodule of M .

Proof. i) Assume that N is an n-submodule; but (N :R M) 6⊆
√
AnnR(M).

Then there exists r ∈ (N :R M) such that r /∈
√
AnnR(M). Thus rM ⊆ N

and since N is an n-submodule, we conclude that N = M , a contradiction.

Hence (N :R M) ⊆
√
AnnR(M).

ii) Let rx ∈
⋂

i∈I Ni with r /∈
√
AnnR(M), for r ∈ R and x ∈ M . Then

rx ∈ Ni, for every i ∈ I. Since for every i ∈ I, Ni is an n-submodule of M , we

get x ∈ Ni and so x ∈
⋂

i∈I Ni.

iii) Let rx ∈
⋃

i∈I Ni where r /∈
√
AnnR(M) for r ∈ R and x ∈ M . Then

rx ∈ Nk for some k ∈ N. Since Nk is an n-submodule, we conclude that

x ∈ Nk ⊆
⋃

i∈I Ni and so
⋃

i∈I Ni is an n-submodule. �

Proposition 2.4. Let I be an ideal of R such that I 6⊆
√
AnnR(M). Then

the followings hold:

(i) If K1 and K2 are n-submodules of M with IK1 = IK2, then K1 = K2.

(ii) If IK is an n-submodule of M , then IK = K.

Proof. (i) Since K1 is an n-submodule and IK2 ⊆ K1, by Theorem 2.2, we get

that K2 ⊆ K1. Likewise, K1 ⊆ K2.

(ii) Since IK is an n-submodule and IK ⊆ IK, we conclude that K ⊆ IK, so

this completes the proof. �

The next lemma provides a useful characterization of modules that have

n-submodule.

Lemma 2.5. Let M be a torsion-free R-module. Then zero submodule is an

n-submodule of M .

Proof. Let ax = 0 with a /∈
√
AnnR(M), for a ∈ R and x ∈ M . Since M is

torsion-free, x = 0. Thus zero submodule of M is an n-submodule. �

Lemma 2.6. If M is a torsion-free multiplication R-module, then zero sub-

module is the only n-submodule of M .

Proof. Suppose that N is an n-submodule of M . Then by Proposition 2.3(i),

we have (N :R M) ⊆
√
AnnR(M) = 0 and so (N :R M) = 0. As M is

multiplication, then N = 0. So by Lemma 2.5, the zero submodule is the only

n-submodule. �
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Proposition 2.7. Let M be an R-module and I be an ideal of R. If N is an

n-submodule of M such that I 6⊆ (N :R M), then (N :M I) is an n-submodule

of M .

Proof. Let ax ∈ (N :M I) with a /∈
√
AnnR(M), for a ∈ R and x ∈ M . So

aIx ⊆ N and as N is an n-submodule, Ix ⊆ N . Hence x ∈ (N :M I). �

Proposition 2.8. Let N be a proper submodule of M . Then N is an n-

submodule if and only if for every x ∈ M , (N :R x) = R or (N :R x) ⊆√
AnnR(M).

Proof. Assume that N is an n-submodule. If (N :R x) 6⊆
√
AnnR(M), then

there exists r ∈ (N :R x) −
√
AnnR(M). So rx ∈ N where r /∈

√
AnnR(M).

Since N is an n-submodule, x ∈ N . Hence (N :R x) = R. Conversely, let

rx ∈ N where r /∈
√
AnnR(M), for r ∈ R and x ∈ M . So r ∈ (N :R

x) −
√
AnnR(M). By assumption, we have (N :R x) = R and therefore

x ∈ N . �

Corollary 2.9. Let N be a proper submodule of M . Then N is an n-submodule

if and only if for every x ∈M −N , (N :R x) ⊆
√
AnnR(M).

Recall that, r ∈ R is said to be a zero divisor of an R-module M , if there

exists a non-zero element x ∈M such that rx = 0.

Theorem 2.10. Let M be an R-module and N be a submodule of M . Then

N is an n-submodule if and only if every zero divisor of an R-module M
N is in√

AnnR(M).

Proof. Let N be an n-submodule and r be a zero divisor of M
N . Then there

exists x ∈ M − N such that rx ∈ N . Since N is an n-submodule, we have

r ∈
√
AnnR(M). For the converse, assume that rx ∈ N where x /∈ N , for

r ∈ R and x ∈M . Then r is a zero divisor of M
N and so r ∈

√
AnnR(M). �

Theorem 2.11. Every maximal n-submodule is a prime submodule.

Proof. Let N be a maximal n-submodule of M and ax ∈ N where a /∈ (N :R
M), for a ∈ R and x ∈ M . By Proposition 2.7, (N :M a) is an n-submodule.

Thus x ∈ (N :M a) = N , by maximality of N . So N is a prime submodule. �

Theorem 2.12. Let M be a finitely generated R-module. If M has an n-

submodule, then M has a prime submodule.

Proof. Suppose that N is an n-submodule and Ω = {L : L is an n −
submodule of M; N ⊆ L}. By Zorn’ s Lemma, Ω has a maximal element

K ∈ Ω. Then by Therorm 2.11, K is a prime submodule of M . �

In ring theory (and so in module theory), the concepts prime ideal and n-

ideal are not the same in general. (see Example 3.2 in [12]). In the following,

we try to find some relations beetwen them.
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Proposition 2.13. For a prime submodule N of M , N is an n-submodule if

and only if (N :R M) =
√
AnnR(M).

Proof. Suppose thatN is a prime submodule ofM . It is clear that
√
AnnR(M) ⊆

(N :R M). If N is an n-submodule, then by Proposition 2.3(i), we have

(N :R M) ⊆
√
AnnR(M) and so (N :R M) =

√
AnnR(M). For the con-

verse, assume that (N :R M) =
√
AnnR(M). Now we show that N is an

n-submodule. Let ax ∈ N and a /∈
√
AnnR(M), for a ∈ R and x ∈ M . Since

N is a prime submodule and a /∈ (N :R M), we get x ∈ N and so N is an

n-submodule. �

Recall from [11], the intersection of all prime submodules contains N , de-

noted rad(N), is called the radical of N . If there is no prime submodule

containing N , rad(N) = M .

Proposition 2.14. Let M be a finitely generated R-module. Then rad(0) is

an n-submodule if and only if rad(0) is a prime submodule.

Proof. Since M is finitely generated, by Theorem 4.4 in [8], (rad(0) :R M) =√
AnnR(M). Suppose that rad(0) is an n-submodule. Let ax ∈ rad(0) with

a /∈ (rad(0) :R M), for a ∈ R and x ∈M . So a /∈
√
AnnR(M) and since rad(0)

is an n-submodule, we have x ∈ rad(0). Thus rad(0) is a prime submodule.

Now assume that rad(0) is a prime submodule. By Proposition 2.13, rad(0) is

an n-submodule. �

Lemma 2.15. Let N be an n-submodule of an R-module M such that (N :R
M) =

√
AnnR(M) . Then N is a prime submodule.

Proof. It is clear. �

Proposition 2.16. If zero submodule of an R-module M is an n-submodule,

then
√
AnnR(M) is a prime ideal of R.

Proof. Let ab ∈
√
AnnR(M) for a, b ∈ R. So there exists n ∈ N such that

anbnM = 0. If a /∈
√
AnnR(M), then since the zero submodule is a n-

submodule, we get bnM = 0; i.e. b ∈
√
AnnR(M). �

Remember that if N is a prime submodule of an R-module M , then (N :R
M) is a prime ideal of R. Now, we give a similar result for n-submodules.

Lemma 2.17. If M is a faithful R-module and N is an n-submodule of M ,

then (N :R M) is an n-ideal of R.

Proof. Assume that ab ∈ (N :R M) with a /∈
√

0, for a, b ∈ R. Since

AnnR(M) = 0 and N is an n-submodule, then b ∈ (N :R M). �

Corollary 2.18. Let M be a faithful R-module and R has no n-ideal. Then

M has no n-submodule.
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Lemma 2.19. Let M be a multiplication R-module and N be a submodule of

M such that (N :R M) is an n-ideal of R. Then N is an n-submodule.

Proof. Let IK ⊆ N with I 6⊆
√
AnnR(M), where I is an ideal of R and K

is a submodule of M . Since M is multiplication and (N :R M) is an n-ideal,

I(K :R M) ⊆ (N :R M) and so (K :R M) ⊆ (N :R M), by Theorem 2.7 in

[12]. Thus K ⊆ N and by Theorem 2.2, N is an n-submodule. �

Corollary 2.20. Let M be a cyclic R-module and N be a submodule of M

such that (N :R M) is an n-ideal of R. Then N is an n-submodule of M .

Recall that a proper submodule N of M is said to be an r-submodule, if for

a ∈ R, m ∈M and whenever am ∈ N with annM (a) = 0, then m ∈ N [5].

Proposition 2.21. Every n-submodule is an r-submodule.

Proof. Let N be an n-submodule of M . Now, we will show that N is an

r-submodule. Let am ∈ N with annM (a) = 0, for some a ∈ R, m ∈ M .

Assume that a ∈
√
AnnR(M). Then there exists n ∈ N such that anM = 0.

Choose the smallest positive integer n such that anM = 0. Then we have

an−1M 6= 0. Since a(an−1M) = anM = 0, we have an−1M ⊆ annM (a) = 0

and so an−1M = 0 which is a contradiction. So that a /∈
√
AnnR(M). As N

is an n-submodule and am ∈ N , we get m ∈ N . Hence, N is an r-submodule

of M . �

Theorem 2.22. Let N be a submodule of M such that (N :R M) ⊆
√
AnnR(M).

Then the following statements are equivalent:

(i) N is an n-submodule;

(ii) N is a primary submodule of M .

Proof. (i)⇒ (ii) Let ax ∈ N with a /∈
√

(N :R M), for a ∈ R and x ∈M . As

N is an n-submodule, we have x ∈ N . Thus N is a primary submodule.

(ii) ⇒ (i) Let ax ∈ N with a /∈
√
AnnR(M), for a ∈ R and x ∈ M . As√

(N :R M) =
√
AnnR(M), we have a /∈

√
AnnR(M). Since N is a primary

submodule, we get x ∈ N . Therefore N is an n-submodule. �

By the proof of previous theorem, every n-submodule is a primary submod-

ule. So it is straightforward to get that if N is an n-submodule of R-module

M , then (N :R M) is a primary ideal of R. Recall if (N :R M) is a maximal

ideal of ring R, then N is a primary submodule of M . So we have:

Corollary 2.23. Let AnnR(M) be a maximal ideal of R. Then every proper

submodule of M is an n-submodule.

By using the fact that every irreducible submodule of a Noetherian module

is a primary submodule (Proposition 1-17 in [4]), we can get the following

corollary:
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Corollary 2.24. Let M be a Noetherian R-module and N be an irreducible sub-

module of M such that (N :R M) ⊆
√
AnnR(M). Then N is an n-submodule

of M .

Proposition 2.25. If N is a primary R-submodule of M such that (N :R M)

is maximal in the set of all n-ideals, then N is an n-submodule of M .

Proof. Let ax ∈ N with a /∈
√
AnnR(M), for a ∈ R and x ∈ M . By The-

orem 2.11 [12],
√

0 =
√

(N :R M). Since N is a primary submodule and

a /∈
√

(N :R M), x ∈ N . �

Lemma 2.26. If N is an n-submodule and L is a primary submodule of an

R-module M such that (L :R M) ⊆ AnnR(M), then N ∩ L is an n-submodule

of M .

Proof. Let rx ∈ N ∩ L where r /∈
√
AnnR(M), for r ∈ R, x ∈ M . Then

r /∈
√

(L :R M). Since L is primary, x ∈ L. Also, since N is an n-submodule,

x ∈ N . Thus x ∈ N ∩ L. �

Recall that a proper ideal I of R is called semiprime, if whenever an ∈ I for

a ∈ R and n ∈ N, then a ∈ I [10]. Now, in the following theorem we give a

characterization for torsion free modules in terms of n-submodules.

Theorem 2.27. Let M be an R-module. Then the following statements are

equivalent:

(i) M is a torsionfree R-module;

(ii) M is faithful, zero submodule is an n-submodule of M and zero ideal is a

semiprime ideal of R.

Proof. (i)⇒ (ii) It follows from Lemma 2.5.

(ii) ⇒ (i) Let rx = 0 and r 6= 0, for r ∈ R, x ∈ M . Since (0) is a semiprime

ideal of R,
√

0 = 0. As M is faithful, it follows that r /∈
√
AnnR(M) =

√
0 = 0.

Since the zero submodule is an n-submodule, x = 0. Therefore, M is a torsion-

free module. �

Theorem 2.28. Let f : M −→M
′

be an R-homomorphism. Then the follow-

ings hold:

(i) If f is an epimorphism and N is an n-submodule of M containing ker(f),

then f(N) is an n-submodule of M
′
.

(ii) If f is a monomorphism and L
′

is an n-submodule of M
′
, then f−1(L

′
) =

M or f−1(L
′
) is an n-submodule of M .

Proof. (i) Let rx
′ ∈ f(N) where r /∈

√
AnnR(M ′), for r ∈ R, x

′ ∈M ′
. Since f

is epimorphism, there exists x ∈ M such that x
′

= f(x). Then rx
′

= rf(x) =

f(rx) ∈ f(N). As ker(f) ⊆ N , we conclude that rx ∈ N . Also, note that

r /∈
√
AnnR(M). Since N is an n-submodule of M , we get the result that

x ∈ N and so x
′

= f(x) ∈ f(N).
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(ii) Let f−1(L
′
) 6= M and rx ∈ f−1(L

′
) where r /∈

√
AnnR(M), for r ∈ R,

x ∈ M . Then f(rx) = rf(x) ∈ L
′
. Since f is a monomorphism and r /∈√

AnnR(M), we get r /∈
√
AnnR(M ′). Since L

′
is an n-submodule of M

′
,

f(x) ∈ L′ and so x ∈ f−1(L
′
). Consequently, f−1(L

′
) is an n-submodule of

M . �

Corollary 2.29. Let M be an R-module and L ⊆ N be two submodules of M .

Then the followings hold:

(i) If N is an n-submodule of M , then N
L is an n-submodule of M

L .

(ii) If N
L is an n-submodule of M

L and (L :R M) ⊆
√
AnnR(M), then N is an

n-submodule of M .

(iii) If N
L is an n-submodule of M

L and L is an n-submodule of M , then N is

an n-submodule of M .

Proof. (i) Assume that N is an n-submodule of M and L ⊆ N . Let π : M −→
M
L be the natural homomorphism. Note that ker(π) = L ⊆ N , and so by

Theorem 2.28(i), N
L is an n-submodule of M

L .

(ii) Let rx ∈ N where r /∈
√
AnnR(M) for r ∈ R, x ∈ M . Then we have

(r + I)(x + L) = rx + L ∈ N
L and r + I /∈

√
AnnR

I
(M
L ), where I = (L :R M).

Since N
L is an n-submodule of M

L , we conclude that x+ L ∈ N
L and so x ∈ N .

Consequently, N is an n-submodule of M .

(iii) It follows from (ii) and Proposition 2.3(i). �

Corollary 2.30. Let M be an R-module and N be a submodule of M . If L is

an n-submodule of M such that N 6⊆ L, then L ∩N is an n-submodule of N .

Proof. Consider the injection i : N −→ M . Note that i−1(L) = L ∩N , so by

Theorem 2.28(ii), L ∩N is an n-submodule of N . �

Let M be an R-module and S be a multiplicative closed subset of R. Con-

sider the natural homomorphsim π from M to MS as π(m) =
m

1
, for any

m ∈ M . Then for each submodule L of MS , we define Lc as an inverse image

of L under this natural homomorphism.

Proposition 2.31. Let M be an R-module and S a multiplicative closed subset

of R.

(i) If N is an n-submodule of M , then NS = MS or NS is an n-submodule of

MS.

(ii) If M is finitely generated, L is an n-submodule of MS and S∩(AnnR(M) :R
a) = ∅ for every a /∈ AnnR(M), then Lc = M or Lc is an n-submodule of M .

Proof. (i) Let NS 6= MS and a
s
m
t ∈ NS where a

s /∈
√
AnnRS

(MS), for a ∈ R,

s, t ∈ S, m ∈ M . Then we have uam ∈ N , for some u ∈ S. It is clear that

a /∈
√
AnnR(M). Since N is an n-submodule of M , we conclude that um ∈ N

and so m
t = um

ut ∈ NS . Therefore NS is an n-submodule of MS .
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(ii) Let Lc 6= M and am ∈ Lc where a /∈
√
AnnR(M) for a ∈ R, m ∈ M .

Then we have a
1
m
1 ∈ L. Now we show that a

1 /∈
√
AnnRS

(MS). Suppose
a
1 ∈

√
AnnRS

(MS). There exists a positive integer k such that (a
1 )kMS = 0.

Then we get uakM = 0 for some u ∈ S, as M is finitely generated. Since

a /∈
√
AnnR(M), akM 6= 0 and so u ∈ (AnnR(M) :R ak) ∩ S, which is a

contradiction. Thus we have a
1 /∈

√
AnnRS

(MS). As L is an n-submodule of

MS , we conclude that m
1 ∈ L and so m ∈ Lc. �

Lemma 2.32. Let M be a finitely generated R-module such that for every

multiplicative closed set S ⊆ R, the kernel of ϕ : M −→ MS is either (0) or

M . Then (0) is an n-submodule of M .

Proof. Let rx = 0 where r ∈ R−
√
AnnR(M) and x ∈M . So rn 6= 0, for every

n ∈ N. We put S = {rn : n ∈ N∪{0}}. Clearly S is a multiplicative closed set in

R. If ker(ϕ) = 0, then as ϕ(x) = x
1 = rx

r = 0 we have x = 0. Let ker(ϕ) = M .

Since M is finitely generated, we can write M = Rx1 + Rx2 + ... + Rxt, for

some x1, x2, ..., xt ∈ M . Then ϕ(xi) = xi

1 = 0 for any 1 ≤ i ≤ t. Thus for any

i, there exists li ∈ N such that rlixi = 0. Put j := max{l1, l2, ..., lt}. Thus we

have rjM = 0 and so r ∈
√
AnnR(M), which is a contradiction. �

We recall that a nonempty subset S of R where R −
√

0 ⊆ S is said to be

an n-multiplicatively closed subset of R, if xy ∈ S for all x ∈ R −
√

0 and all

y ∈ S (see [12]).

Theorem 2.33. Let M be a finitely generated R-module and N be a proper

submodule of M such that (N :R M) ∩ S = ∅, where S is an n-multiplicatively

closed set in R. Then there exists an n-submodule L of M cotaining N such

that (L :R M) ∩ S = ∅.

Proof. Consider that set Ω = {L : L is a submodule of M ; (L :R
M) ∩ S = ∅}. Since N ∈ Ω, we have Ω 6= ∅. Since M is finitely generated, by

using Zorn’ s lemma, we get a maximal element K of Ω. Now we show that

K is an n-submodule of M . Suppose that rx ∈ K, for some r /∈
√
AnnR(M)

and x /∈ K. Thus we get x ∈ (K :M r) and K ⊂ (K :M r). By maximality of

K , we have ((K :M r) :R M) ∩ S 6= ∅ and thus there exists t ∈ S such that

tM ⊆ (K :M r). Also rt ∈ S, because r ∈ R −
√

0 and t ∈ S and S is an

n-multiplicatively closed subset of R. We get (K :R M) ∩ S 6= ∅, which is a

contradictions. Hence K is an n-submodule of M . �

Proposition 2.34. Suppose that N ⊆
⋃n

i=1Ni, where N,Ni (1 ≤ i ≤ n),

are R-submodules of M . If there exists Nj such that N 6⊆
⋃

i 6=j Ni, Nj is an

n-submodule and (
⋂

i 6=j Ni :R M) 6⊆
√
AnnR(M), then N ⊆ Nj

Proof. We may assume that j = 1. Since N 6⊆
⋃

i≥2Ni, there exists x ∈
N −

⋃n
i=2Ni. Thus we have x ∈ N1. Let y ∈ N ∩ (

⋂n
i=2Ni). Since x /∈ Nk and

y ∈ Nk for every 2 ≤ k ≤ n, we have x + y /∈ Nk. Thus x + y ∈ N −
⋃n

i=2Ni
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and so x + y ∈ N1. As x + y ∈ N1 and x ∈ N1, it follows that y ∈ N1 and so

N ∩ (
⋂n

i=2Ni) ⊆ N1. Also we have (
⋂n

i=2Ni :R M)N ⊆ N ∩ (
⋂n

i=2Ni). Now

since (
⋂n

i=2Ni :R M)N ⊆ N1, (
⋂n

i=2Ni :R M) 6⊆
√
AnnR(M) and N1 is an

n-submodule of M , we have N ⊆ N1. �

Following Lemma 1.1 in [9], a sbmodule K of an R-module M is prime if and

only if p = (K :R M) is a prime ideal of R and the R
p -module M

K is torsion-free.

Now, we give a similar result for n-submodules.

Theorem 2.35. Let N be an R-submodule of M such that I =
√
AnnR(M) ⊆

(N :R M). Then N is an n-submodule of M if and only if M
N is a torsion-free

R
I -module.

Proof. Let N be an n-submodule and (r + I)(x + N) = 0M
N

, for r ∈ R and

x ∈ M . Then we have rx ∈ N . If r ∈ I, then r + I = 0. Otherwise, since

N is an n-submodule, we conclude that x ∈ N and so x + N = 0. For the

converse, assume that M
N is a torsion-free R

I -module and rx ∈ N , for x ∈ M
and r ∈ R−

√
AnnR(M). Then (r+I)(x+N) = rx+N = N = 0M

N
. Now as M

N

is a torsion-free R
I -module and r /∈ I, we have x ∈ N . So N is an n-submodule

of M . �

Lemma 2.36. Let {Li}i∈I be a family of R-submodules of {Mi}i∈I . If Πi∈ILi

is an n-submodule of Πi∈IMi, then for every i ∈ I, Li is an n-submodule of

Mi.

Proof. Let Πi∈ILi be an n-submodule of Πi∈IMi and i be an arbitrary in

I. We will prove Li is an n-submodule of Mi. Suppose that rx ∈ Li where

r /∈
√
AnnR(Mi), for r ∈ R and x ∈Mi. Put xi := x and xj := 0 for all j 6= i.

Then we have r(xj)j∈I ∈ Πj∈ILj and r /∈
√
AnnR(Πj∈IMj). Since Πj∈ILj is

an n-submodule of Πj∈IMj , so (xj)j∈I ∈ Πj∈ILj . Hence xi ∈ Li. �

Corollary 2.37. Let M1 and M2 be R-module and M = M1 ×M2. Then the

following are satisfied:

(i) If L1 ×M2 is an n-submodule of M , then L1 is an n-submodule of M1.

(ii) If M1 × L2 is an n-submodule of M , then L2 is an n-submodule of M2.

Theorem 2.38. Let N be a proper R-submodule of M . Then N is an n-

submodule of M if and only if for each a ∈ R −
√
AnnR(M), the homothety

λa : M
N −→

M
N is an injective.

Proof. Suppose that N is an n-submodule and λa(x + N) = 0M
N

for a ∈ R −√
AnnR(M), x ∈M . Then ax ∈ N and since N is an n-submodule, so x ∈ N

and x+N = 0. Hence λa is injective. Conversely, suppose that rx ∈ N where

r /∈
√
AnnR(M), for r ∈ R, x ∈M . It follows that λr(x+N) = 0. Since λr is

injective, x+N = 0 and so x ∈ N . �
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In [7], I.G. Macdonald introduced the notion of secondary modules. A

nonzero R-module M is said to be secondary, if for each a ∈ R the endo-

morphism of M given by multiplication by a is either surjective or nilpotent.

Proposition 2.39. If M is a secondary R-module such that every ascending

chain of cyclic submodules of it stops, then every proper submodule of M is an

n-submodule.

Proof. Let N be a proper submodule of M and rx ∈ N , for r ∈ R and x ∈M .

Assume that ϕr is the homothety M → M for r ∈ R. If ϕr is nilpotent, then

there exists n ∈ N such that (ϕr)n = 0. It follows that rn ∈ AnnR(M) and so

r ∈
√
AnnR(M). If ϕr is surjective, then we have

x = rx1

x1 = rx2

x2 = rx3

...

xn = rxn+1

...

for some xi ∈ M . Then < x >⊆< x1 >⊆< x2 > ... ⊆< xn >⊆ .... Since M

is complete, there exists n ∈ N such that < xn >=< xi >, for every i ≥ n.

Hence there exists s ∈ R such that xn+1 = sxn. It follows that xn = rsxn. So

(1− rs)x = 0 and we have x = srx. As rx ∈ N , so x ∈ N . �

Corollary 2.40. Let M be a Noetherian secondary module. Then every proper

submodule is an n-submodule.

Proposition 2.41. If N is an n-R-submodule of M , then N [x] an n-submodule

of M [x].

Proof. Let r be a zero divisor of an R-module M [x]
N [x] . Since M [x]

N [x]
∼= M

N [x], then

there exists f(x) = a0+a1x+ .....+atx
t ∈M [x] such that 0 /∈ f(x) ∈ M

N [x] and

rf(x) = 0. Hence rai ∈ N , for 1 ≤ i ≤ t. If for every i, ai ∈ N , then f(x) = 0,

which is a contradiction. Thus there exists 1 ≤ i ≤ t such that ai /∈ N with

rai ∈ N . On the other hand, as N is an n-submodule, so r ∈
√
AnnR(M).

Since M ⊆ M [x], so r ∈
√
AnnR(M [x]). Then by Theorem 2.10, N [x] is an

n-submodule of M [x]. �
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3. examples

Example 3.1. Let M = Z2⊕Z2 and R = Z. Then every proper submodule of

M is an n-submodule. It is clear that every proper submodule of M is prime

and the colon ideal of M into submodules are equal 2Z. Now according to

Proposition 2.13, every proper submodule of M is an n-submodule.

Now we have an example which shows that there exists an R-module that

does not have an n-submodule.

Example 3.2. Let p be any prime number. Let M = Zp∞ ⊕ Z and R = Z.

Then every proper submodule of M is not an n-submodule. Let N be an n-

submodule of M . By Proposition 2.3(i), (N :R M) ⊆
√
AnnR(M) =

√
0 = 0.

It follows that (N :R M) =
√
AnnR(M). Then by Lemma 2.15, N is a prime

submodule. On the other hand, pM is the only prime submodule of M . So

N = pM and (N :R M) = (pM :R M) = pZ, which is a contradiction.

Remark 3.3. (i) By Theorem 2.22, every n-submodule of a module is a primary

submodule. However, the converse is not true in general. Since for example: if

R = Z, M = Z and N = 4Z, then N is a primary submodule of M , however it

is not n-submodule, as 2.2 ∈ N , but 2 /∈
√
AnnR(M) and 2 /∈ N .

(ii) It is well known that if N is a prime submodule of M , then (N :R M) is

a prime ideal of R. Contrary to what happens for a prime submodules, if N

is an n-submodule, the ideal (N :R M) is not in general an n-ideal of R. For

example: Let M = Z4, R = Z. Take N = (0̄). Certainly N is an n-submodule

of M , but (N :R M) = 4Z is not an n-ideal of R.

The following example shows that the converse of Lemma 2.5, is not neces-

sarily true.

Example 3.4. Consider the Z-module Z4 and N = (0̄). Clearly N is an n-

submodule, but M is not a torsion-free module.

In the next example, we show that zero submodule is not always the only

n-submodule of torsion-free modules.

Example 3.5. Let M = Z⊕Z and R = Z. consider the submodule N = 0⊕Z.

Let a(m,n) = (am, an) ∈ N with a 6∈
√
AnnR(M) = 0 for some a,m, n,∈ Z.

Then we have am = 0 and so m = 0. This implies that (m,n) = (0, n) ∈ N .

Thus N is a nonzero n-submodule of M .

The next example shows that the sum of two n-submodule is not an n-

submodule in general.

Example 3.6. Let M = Z⊕Z and R = Z. Consider the submodules N = 0⊕Z
and K = Z ⊕ 0. One can easily see that K and N are n-submodules. Since

N +K = M , N +K is not an n-submodule of M .
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Proposition 3.7. Q as Z-module has only one n-submodule.

Proof. By Lemma 2.5, zero submodule is an n-submodule of Q. Let N be an

n-submodule. It follows that (N :Z Q) = 0. Then by Lemma 2.15, N is an

prime submodule of Q, which is zero. �

Now we give an example to show that in Theorem 2.27, it is necessary that

zero submodule be an n-submodule.

Example 3.8. Let M be the Z-module Zp∞ ⊕ Z. M is faithful and zero ideal

is a semiprime ideal. By Example 3.2, zero submodule is not n-submodule of

M and M is not torsion-free.

In the following examples we show that the condition ker(f) ⊆ N in The-

orem 2.28(i) and the condition monomorphism in Theorem 2.28(ii), are neces-

sary.

Example 3.9. Consider the Z-epimorphism

ψ : Z −→ Z6; a 7−→ ā

Clearly ψ(0) = 0̄ and ker(ψ) = 6Z 6⊆ (0). By Example 2.1(ii), ¯(0) is not

n-submodule of Z6.

Example 3.10. Consider the zero homomorphism

g : Q −→ Z;

clearly ker(g) = Q. So g is not monomorphism. By Proposition 3.7, g−1(0) is

not an n-submodule.
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