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ABSTRACT. This paper establishes a study on some important latest
innovations in the uniqueness of solution for Caputo fractional Volterra-
Fredholm integro-differential equations. To apply this, the study uses
Banach contraction principle and Bihari’s inequality. A wider applicabil-
ity of these techniques are based on their reliability and reduction in the

size of the mathematical work.
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1. INTRODUCTION

In the fractional calculus the various integral inequalities plays an impor-
tant role in the study of qualitative and quantitative properties of solution of
differential and integral equations.

In recent years, many authors focus on the development of techniques for dis-
cussing the solutions of fractional integro-differential equations. For instance,
we can remember the following works:
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Ahmad and Sivasundaram [1] studied some existence and uniqueness results
in a Banach space for the fractional integro-differential equation (1.1) with
nonlinear condition h(zg) = hg — f(z). Momani et al.[2], proved the Local and
global uniqueness result by using Bihari’s inequality for the fractional integro-
differential equation (1.1) with the initial condition h(zg) = hg, Wu and Liu
[3] discussed the existence and uniqueness of solutions for fractional integro-
differential equations (1.1) with conditions h(zg)+ f(z) = ho. Karthikeyan and
Trujillo [4], proved existence and uniqueness of solutions for fractional integro-
differential equations with boundary value conditions.

°D*h(z) = g(z, h(x)) + /I K (x,t,h(t))dt, 0<a<l, (1.1)

Recently, in [2, 5] the author’s obtained the result on uniqueness of solu-
tions for fractional integro-differential with initial condition using the Bihari’s
inequality.

Motivated by above work, in this paper we discuss new uniqueness results for
Caputo fractional Volterra-Fredholm integro-differential equation of the form
[6, 7]:

b

°D*h(t) = f(t)h(t)+g(t,h(t))+/ Zl(t,s,h(s))ds+/ Zs(t,s,h(s))ds, (1.2)

to to

with the initial condition

h(to) = ho, (1.3)
where ¢D® is the Caputo’s fractional derivative, 0 < a < 1 and h: J — R,
where J = [tg,b] is the continuous function which has to be determined,

g: JXxR —Rand Z; : J xJ xR — R,i = 1,2 are continuous func-
tions.

The main objective of the present paper is to study the new uniqueness re-
sults of the solution for Caputo fractional Volterra-Fredholm integro-differential
equation.

The rest of the paper is organized as follows: In Section 2, some prelimi-
naries, basic definitions and Lemma related to fractional calculus are recalled.
In Section 3, the new uniqueness results of the solution for Caputo fractional
Volterra-Fredholm integro-differential equation have been proved. Finally, we
will give a report on our paper and a brief conclusion is given in Section 4.

2. PRELIMINARIES

The mathematical definitions of fractional derivative and fractional integra-
tion are the subject of several different approaches. The fractional derivative
and applications have been addressed extensively by several researchers. For
example, we refer the reader to [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24] and
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the references cited therein. In this section, we show the most frequently used
definitions of the fractional calculus involves the Riemann-Liouville fractional
derivative, Caputo derivative [7, 8, 19, 20, 21, 22, 23]. Let C(J,R) is the Banach
space endowed with the infinity norm ||h||e = sup{|h(z)|: € J = [tg, b]}, for
any h € C(J,R).

Definition 2.1. [25] (Riemann-Liouville fractional integral). The Riemann-
Liouville fractional integral of order o > 0 of a function & is defined as

Jh(z) = F(la)/oz(a:—t)o‘lh(t)dt, >0, acR'
J°h(z) = h(z),

where RT is the set of positive real numbers.

Definition 2.2. [25] (Caputo fractional derivative). The fractional deriv-
ative of h(x) in the Caputo sense is defined by

‘Dyh(z) = J" *D"h(x)
x M — d™h
ﬁfo (Z‘—t) ! dtwst)dta m_1<a<m,
= 2.1)
d7;£7$2?)7 o = ’]’n7 m & ]\f7

where the parameter « is the order of the derivative and is allowed to be real
or even complex. In this paper, only real and positive a will be considered.
Hence, we have the following properties:

(1) J¥J°h = J**°h, a,v > 0.

« _ _I(B+1) B+a
2) J hﬁ_ir(ﬂwﬂ)h ,
(3) D*hP = %h/ﬂ, a>0 B>-1, z>0.
(4) JEDh(z) = h(z) — X ABON)Z, 2>0, m—1<a<m.

Definition 2.3. [25] (Riemann-Liouville fractional derivative). The Rie-
mann Liouville fractional derivative of order v > 0 is normally defined as

Dh(z) = D™ I “h(x), m—1<a<m, meN (2.2)

Lemma 2.4. [26] (Banach contraction principle). Let (X,d) be a com-
plete metric space, then each contraction mapping ¥ : X — X has a unique
fixed point x of ¥ in X di.e. V= .

Lemma 2.5. [2] (Bihari’s inequality). Let g : [0,+00) — (0,+00) is
continuous and monotone-increasing. h: [a,b] — R be a continuous function
that satisfies the inequality

h(t) < a—i—/f K(s)g(h(s))ds.
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Then the following inequality hold

h(t) <67t [a(a) + /t: K(s)ds}

where 0 : R — R is a primitive of ﬁ, ie. O(x)= fli %, x €R.

3. MAIN RESULTS

In this section, we will display and prove the uniqueness results of problem
(1.2) — (1.3). Before starting and proving our main results, we present the
following lemma and some useful hypotheses:

(H1): Z1,Z5 : J x J x R = R are continuous on D = {(¢,5) : 0 <ty <
s <t < b} such that

/ |Z1 (7, s,h1(s)) — Z1(7, 8, ha(s))|dt < L, Ah1(s) — ha(s)|

b
|Zo(T, 8, h1(8)) — Za(7, 8, ha(s))|dt < L., A|lh1(s) — ha(s)]

(H2): The function g : J x R — R is continuous.
‘g(t7 hl) - g(t7 h2)| < )\|h1 - h2|

(H3): The function f : J — R is continuous.

where hy, hy € C(J,R), A : Rt — RT is nondecreasing continuous function

with A(0) = 0 and fOR% = +o00, 0 <t < 1, and L, ,L,, are positive

constants.

Lemma 3.1. If ho(t) € C(J,R), then h(t) € C(J,R") is a solution of the
problem (1.2) — (1.3) iff h satisfying

— t a-l 1 t —5)*Lg(s, h(s))ds
ey L €97 s + gy [0 o sy
1

' _ Na—1 k b
+ F(Oé)/to(t s) (/S Z1(T7s,h(s))d7+/s Z2(7,37h(s))d7> ds,(3.1)
forte J

h(t) = ho+

Proof. It can be proved easily by applying the integral operator (2.1) to both
sides of (1.2) to get the integral equation (3.1). |

Our first result depends on Bihari’s inequality.

Theorem 3.2. Assume that (H1)-(H3) hold. If

[
INa+1)

Then there exists a unique solution h(t) € C(J) to (1.2) — (1.3).

< 1. (3.2)
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Proof. By Lemma 3.1. we know that a function A is a solution to (1.2) — (1.3)
iff h satisfies

1

ht) = m+mwéy—@%7@mwu+J@Aﬁ—ﬁ%w@mm@

+ F(la)/t;(t—s)al </t Zl(T,S,h(s))dT+/:Z2(7',s,h(s))d7'> ds.

Let hy,hy € C(J,R) and for any ¢t € J such that

h(t) = hwkﬁ/t (t—s)“_lf(s)hl(s)ds—i—%a)/t (t — 5)° g (s, h(s))ds

+ F(la)/t:(ts)o‘l </t Zi(r.s, hl(s))d7+/sb ZQ(T,s,hl(s))dT> ds.

and

I'(a)

1 ' a—1 ¢ b
* @ /to (=) (/s Z1(7, 8, ha(s))dr +/S ZQ(T,S,h2(S>)dT> ds.

Consequently, by (H1), (H2) and (H3), then for ¢t € J, we have

mat) = ot g [ =9 s+ s [ (0= 9 (s a(s)ds

I o
ha(t) = ha(8)] < F(O()/to(t—s) HE)Iha(t) = ha(t)|ds

1 ' a—1
) /t (t = )" g(s, hi(s)) — g(s, ha(s))|ds
1 t - t
") /t (=9 ( [ V7a(rsn(s) = Za(ros s

b
+/ | Zo (7, 5, hl(s))—ZQ(T,s,hQ(s))uT)ds.

< &méﬁ—w*ﬂmm@—M@m
+ﬁ /t:(t—s)a_l)\|h1(s) — ha(s)|ds
+ﬁ /t:(t = )27 (Lo MR (5) = ha(s)] + Lo Al (s) = ha(s)] ) ds.
< M=) nate+ P [ sy s)— hatoas
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Thus
|hi(t) — ho(t)] < o+ MLF(O;)FL)/t (t — )" A|h1(s) — ha(s)|ds.

where ¢ > 0, now we can apply Bihari’s inequality to obtain

als } (3.3)

ha(t) — ho(t)] <071 [9(0) T AT

where 6(h) is a primitive of the function ﬁ, and 0! denotes the inverse

of # and N = % It follows that 6! [9(0) + algl(’z)] — 0. We
shall prove that the right-hand side of (3.3) tends toward zero as o — 0.
Since |hq(t) — hao(t)] is independent of o, it follows that hi(t) = ha(t). So,
h(t) € C(J,R) is the unique solution of the initial value problem (1.2) — (1.3)

and the proof is completed.

O

We shall next discuss another uniqueness result for the initial value problem
(1.2) — (1.3) using the Banach contraction principle.
Before starting and proving we introduce the new following hypotheses:

(I): Z1,Z3:J x J xR — R are continuous on D = {(t,8) : 0 <tp < s <
t < b} such that

|Z1(7,8,h1(s)) = Z1(7, 8, ha(s))|dt < L7, [ (s) — ha(s)||
|Z2(7, 5, ha(s)) = Z2(T, 8, ha(s))|dt < L7, [[h1(s) — ha(s)||
(II): The function g : J x R — R is continuous.
l9(t, k1) — g(t, ho)| < Lgllha — hell
(III): The function f: J — R is continuous.
where L7 , L7, and L are positive constants.

Theorem 3.3. Assume that the hypotheses (I)—(III) are satisfied. And let
and v be two positive real numbers such that 0 < 8 < 1 and
[”f”oo + Ly (L%, +LL)b
Ia+1) a+ 1T (@)

oo = 5,

9o (21 +25)b
MNa+1) a+1T(a)
Then the initial value problem (1.2) —(1.3) has a unique solution continuous on
[thbL where go = maX{|g(570)| 18 € J}7 Zik = ma'x{|Z1(T7570)| : (T7S) € D}
and z3 = max{|Z2(7,s,0)| : (1,s) € D}.

ol + | Jor =@ -p).
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Proof. Let the operator T : C(J,R) — C(J,R) be defined by

(Th)(t) = ho+ / (t —s)* "L f(s)h(s)ds + L / (t—s)*"1g(s,h(s))ds

T() Jy o J,
1 ' a—1 ¢ b
T / =) </ AT s oD+ / Zo(r,, h<s>>d7> ds,

and define @, = h € C(J,R) : ||h|lcc <y for some v > 0. Now, we need to
prove that the operator T' has a fixed point on &, C C(J,R). This fixed point
is the unique solution of the initial value problem (1.2) — (1.3). In order that,
we present the proof in two steps:

Step 1. We need to prove that the operator T'¢, C &,,.
By the above hypotheses, then for any h € ¢, and for ¢t € J, we have

(Th)®)] < \ho\Jr%a) / (t*S)"’llf(S)Hh(S)ldHﬁ / (t — £)*g(s, h(s))|ds

1 ' a—1 K b
) /to“‘” (/ 1Z1(7, 3, h(s))ldr + / |zg<7,s,h<s>>|d7) ds,

< lhol+ gy | (6= " I el
L ol h 0 0)|)d
+m /to(t—s) (lg(s, h(s)) — g(s,0)| + |g(s,0)[)ds
1 t — — 7,8 T
—|—m /to(t—s) (/S (|1Z1(7,8,1(8)) — Z1(7,5,0)| + | Z1 (7, 5,0)|)d
b
+ [ 122075.005) = Zalr,.0) + Za(r,5.0) i) s,
(a4 o (a+1)
< ol ST * a0 g o+
b(a+1) * *
+m@zﬂ+zz)
g (5 +25)b \ .o I flloo + Ly (L%, 4+ L3,)bN
< lhol+ (F(ij'l) * (Oz:-l)f?(a))b ( INa+1) (a+ 1)(a) )b

= 1-By+By=n.

It follows that || Th|| < 7, this implise that Th € &, which leads to 79, C
D,
Step 2. We need to prove that T is contraction mapping.
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Let h1, ho € &, we get:
[(Tha)(t) — (Ths)(t)]

F(lcw/ (t =) |f ()| 71 (s) = ha(s)| ds

ﬁ /t (t =) [g(s, ha(s)) — g(s, ha(s))| ds

+ﬁ/t (t - S)a_1</ |Z1(7, 8, h1(s)) — Z1(7, 8, ha(s))] dT
b

+ / Za(7, 5, (5)) = Za(r, 5, ()| dr ) ds

£l 0 Lyb® Ly b + Ly oot
S Tlat+1) lh1 — hal| + CES) [lh1 — hal + CESIRD) |lh1 — hal]

(||f||C>o +Ly (LI +L%)b
INa+1) (a+ D)
= ¢|h1— hof|.

)ba |h1 — ha||

* (LT +L)b
Since € = (H?(IZ"LL)g + ((;j_:r)rz(i)) )ba < 1, we get

IThy = Thyl| < & |[hy — hal|

This implies that T is contraction mapping. As consequence of Lemma 2.2,
there exists a fixed point h € C(J,R) such that Th = h which is the unique
solution of the initial value problem (1.2)—(1.3), and the proof is completed. [

4. CONCLUSIONS

The main purpose of this paper was to present new uniqueness results of
the solution for Caputo fractional Volterra-Fredholm integro-differential. The
techniques used to prove our results are a variety of tools such as Bihari’s
inequality, some properties of fractional calculus and Banach contraction map-
ping principle. Moreover, the results of references [2, 4, 5] appear as special
cases of our results.
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