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ABSTRACT. We introduce the notion of quasi-cyclic-noncyclic pair and its
relevant new notion of coincidence quasi-best proximity points in a con-
vex metric space. In this way we generalize the notion of coincidence-best
proximity point already introduced by M. Gabeleh et al [14]. It turns out
that under some circumstances this new class of mappings contains the
class of cyclic-noncyclic mappings as a subclass. The existence and con-
vergence of coincidence-best and coincidence quasi-best proximity points

in the setting of convex metric spaces are investigated.
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1. INTRODUCTION

Let (X,d) be a metric space, and let A, B be subsets of X. A mapping
T:AUB — AUB is said to be cyclic provided that T(A) C B and T'(B) C A;
similarly, a mapping S : AU B — AU B is said to be noncyclic if S(A) C A
and S(B) C B. The following theorem is an extension of Banach contraction
principle.
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Theorem 1.1. ([18]) Let A and B be nonempty closed subsets of a complete
metric space (X,d). Suppose that T is a cyclic mapping such that

d(Tz,Ty) < ad(z,y),

for some « € (0,1) and for allz € A, y € B. Then T has a unique fixed point
in AN B.

Let A and B be nonempty subsets of a metric space X. A mapping T :
AUB — AU B is said to be a cyclic contraction if T is cyclic and

d(Tz,Ty) < ad(x,y) + (1 — «)dist(4, B)
for some « € (0,1) and for all z € A, y € B, where
dist(A, B) := inf{d(z,y) : (z,y) € A x B}.

For a cyclic mapping T: AUB — AU B, a point x € AU B is said to be a
best proximity point provided that

d(z,Tx) = dist(A, B).

The following existence, uniqueness and convergence result of a best prox-
imity point for cyclic contractions is the main result of [8].

Theorem 1.2. ([8]) Let A and B be nonempty closed convex subsets of a
uniformly convex Banach space X and let T : AUB — AU B be a cyclic
contraction map. For xoy € A, define x,,41 := Tx,, for each n > 0. Then there
exists a unique v € A such that xo, — x and

||z — Tz|| = dist(A, B).

In the theory of best proximity points, one usually considers a cyclic mapping
T defined on the union of two (closed) subsets of a given metric space. Here
the objective is to minimize the expression d(z, Tx) where x runs through the
domain of T'; that is AU B. In other words, we want to find

min{d(z,Tz) : x € AU B}.

If A and B intersect, the solution is clearly a fixed point of T'; otherwise we
have

d(z,Tx) > dist(A,B), Vx € AUB,

so that the point at which the equality occurs is called a best proximity point
of T. This point of view dominates the literature.

Very recently, M. Gabeleh, O. Olela Otafudu, and N. Shahzad [14] considered
two mappings 7" and .S simultaneously and established interesting results. For
technical reasons, the first map should be cyclic and the second one should
be noncyclic. According to [14], for a nonempty pair of subsets (A, B), and a
cyclic-noncyclic pair (T;.5) on AU B (that is, T: AUB — AU B is cyclic and
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S : AUB — AU B is noncyclic); they called a point p € AU B a coincidence
best prozimity point for (T;S) provided that

d(Sp,Tp) = dist(A4, B).

Note that if S = I, the identity map on AU B, then p € AU B is a best
proximity point for T. Also, if dist(A, B) = 0, then p is called a coincidence
point for (T;S) (see [12] and [15] for more information). With the definition
just given, and depending on the situation as to whether S equals the identity
map, or if the distance between the underlying sets is zero, one obtains a
best proximity point for T, or a coincidence point for the pair (7;S). This
was in fact the philosophy behind the phrase coincidence-best proximity point
coined by Gabeleh et al. They then defined the notion of a cyclic-noncyclic
contraction.

Definition 1.3. ([14]) Let (A, B) be a nonempty pair of subsets of a metric
space (X,d) and T, S : AU B — AU B be two mappings. The pair (T;S) is
called a cyclic-noncyclic contraction pair if it satisfies the following conditions:
(1) (T;9) is a cyclic-noncyclic pair on AU B.
(2) For some r € (0,1) we have

d(Tz,Ty) < rd(Sz,Sy) + (1 —r)dist(A, B), Y(z,y) € A x B.

To state the main result of [14], we need to recall the notion of convexity
in the framework of metric spaces. In [26], Takahashi introduced the notion of
convexity in metric spaces as follows (see also [24]).

Definition 1.4. Let (X,d) be a metric space and I := [0,1]. A mapping
W: X x X xI— X is said to be a convex structure on X provided that for
each (z,y;A\) € X x X x I and u € X,

d(u, W(z,y; N)) < Ad(u,z) + (1 — N)d(u, y).

A metric space (X, d) together with a convex structure W is called a convez
metric space, and is denoted by (X,d,W). A Banach space and each of its
convex subsets are convex metric spaces.

A subset K of a convex metric space (X,d, W) is said to be a convex set
provided that W(z,y; A) € K for all z,y € K and X € I.

Similarly, a convex metric space (X, d, W) is said to be uniformly convex if
for any € > 0, there exists a = «(g) such that for all » > 0 and z,y, z € X with
d(z,x) <r, d(z,y) <rand d(z,y) > re,

d(z,W(z,y; %)) <r(l—-a)<r

For example every uniformly convex Banach space is a uniformly convex
metric space.
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Definition 1.5. ([14]) Let (A4, B) be a nonempty pair of subsets of a metric
space (X,d). A mapping S : AUB — AU B is said to be a relatively anti-
Lipschitzian mapping if there exists ¢ > 0 such that

d(z,y) < cd(Sz, Sy), V(z,y) € A x B.
The main result of M. Gabeleh et al reads as follows:

Theorem 1.6. ([14]) Let (A, B) be a nonempty, closed pair of subsets of a
complete uniformly convex metric space (X,d, W) such that A is convexr. Let
(T; S) be a cyclic-noncyclic contraction pair defined on AUB such that T(A) C
S(B) and T(B) C S(A) and that S is continuous on A and relatively anti-
Lipschitzian on AU B. Then (T;5) has a coincidence best proximily point
in A. Further, if xg € A and Sx,11 := Tx,, then (x2,) converges to the
coincidence-best proximity point of (T;S).

Existence of best proximity pairs was first studied in [9] by using a geometric
property on a nonempty pair of subsets of a Banach space, called prozimal
normal structure, for noncyclic relatively nonexpansive mappings (Theorem
2.2 of [9]). Some existence results of best proximity pairs can be found in
1,2, 5,6, 7,10, 11, 13, 17, 23, 25].

In the current paper, we study sufficient conditions which ensure the exis-
tence and convergence of coincidence-best and quasi-best proximity point for
a pair of quasi-cyclic-noncyclic contraction mappings in the setting of convex
metric spaces.

2. COINCIDENCE QUASI-BEST PROXIMITY POINT

In this section, we introduce the class of quasi-cyclic-noncyclic mappings that
contains the class of cyclic-noncyclic mappings as a subclass. Next, we intro-
duce the new notion of quasi-best proximity points for this mappings. Finally,
we study the existence and convergence of coincidence quasi-best proximity
points for quasi-cyclic-noncyclic contraction mappings in the setting of convex
metric spaces.

Definition 2.1. Let (A4, B) be a nonempty pair of subsets of a metric space
(X,d) and T, S : X — X be two mappings. The pair (T} S) is called a quasi-
cyclic-noncyclic (QCN) contraction pair if it satisfies the following conditions:
(1) (T S) is a quasi-cyclic-noncyclic pair on X; that is,
T(A) C S(B), T(B) C S(A).
(2) For some « € (0,1) and for each (x,y) € A x B we have
d(Tz,Ty) < ad(Sz, Sy) + (1 — a)dist(S(A), S(B)).

Note that if S(A) = A and S(B) = B, then the above definition reduces to
Definition 1.3; that is, the pair (T%;.5) is a cyclic-noncyclic pair.
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ExXAMPLE 2.2. Let X := R with the usual metric. For A = (—o0,—1] and
B =[1,400) define T, S : X — X by

20+ 1, if €A
and Sx:=<2x—1,if xr€B

0, ow.

—x, if r€ AUB
Tx :=
0, ow.

Then (T'; S) is a QCN contraction pair with o = % Indeed, for all (z,y) € AxB
we have

(T Tyl = (y — ) < 5(29 20— 2) + 3(2)
= o|Sx — Sy| + (1 — a)dist(S(A4), S(B)).
Also, T(A) = B C S(B) and T(B) = A C S(A).

The next example shows that there is a QCN mapping that is not a cyclic-
noncyclic mapping.

EXAMPLE 2.3. Let X := R with the usual metric. For A = (—o0,—1] and
B =][1,400) define T, S : X — X by

y AUB z+1, ifreA
—x, c
Ta:::{ o and Szx:=qx—1,if xr€B
0, ow.
0, ow.

Then (T;S) is a quasi-cyclic-noncyclic pair that is not a cyclic-noncyclic pair.
Remark 2.4. Notice that (2) implies that
d(Tz,Ty) < d(Sz,Sy), V(z,y) € Ax B.
Moreover, if S is a noncyclic relatively nonexpansive mapping; meaning that
d(Sz, Sy) < d(z,y), V(z,y) € A X B,

then T is a cyclic contraction. In addition, if in the above definition S is
assumed to be continuous, then T" would be continuous too.

Definition 2.5. Let (A4, B) be a nonempty pair of subsets of a metric space
(X,d) and T,S : X — X be a quasi-cyclic-noncyclic pair on X. A point
p € AU B is said to be a coincidence quasi-best proximity point for (7 .5)
provided that

d(Sp,Tp) = dist(S(A), S(B)).

Note that if S = I, then p reduces to a coincidence-best proximity point for
(T; S).

To prove the main result of this section, we need some preparations.
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Lemma 2.6. Let (A, B) be a nonempty pair of subsets of a metric space (X, d)
and let (T'; S) be a quasi-cyclic-noncyclic pair defined on X. Then there exists
a sequence {x,} in X such that for all m > 0 we have Tz, = Sz, where
{zan}, {xont1} are subsequences in A and B respectively.

Proof. Let xg € A. Since Tzy € S(B), there exists z; € B such that Tzy =

Sz1. Again, since Tz € S(A), there exists 9 € A such that Ta; = Sxs.
Continuing this process, we obtain a sequence {x,, }, such that {x2,}, {T2n+1}

are in A and B respectively and Tz, = Sz,41 for all n € NU {0}. O

Lemma 2.7. Let (A, B) be a nonempty pair of subsets of a metric space (X, d)
and let (T;S) be a QCN contraction pair defined on X. For xg € A, define
Tx, = Sxpy1 for each n > 0. Then we have

d(Sap, Stany1) — dist(S(A), S(B)).
Proof.
d(Stani1, Sont2) = d(Txan, TToni1)
< ad(STan, Stant1) + (1 — a)dist(S(A4), S(B))
= ad(Tx2n-1,Txa,) + (1 — a)dist(S(A), S(B))
< afad(Szan—1,5%2,) + (1 — a)dist(S(A), S(B))]
+ (1 — a)dist(S(A4), S(B))
= a?d(Szon_1,S2,) + (1 — a?)dist(S(A), S(B))
= a?d(Twan_2,Twan 1) + (1 — a?)dist(S(A), S(B))

IN

< a®"d(Txo, Tr1) + (1 — o?)dist(S(A), S(B)).
Now, if n — oo in above relation, we conclude that
d(Sl‘gn, S$2n+1) — dlSt(S(A), S(B))
O
Theorem 2.8. Let (A, B) be a nonempty pair of subsets of a metric space
(X,d) and let (T;S) be a QCN contraction pair defined on X. Assume that
S is continuous on A. For xoy € A, define Tx,, = Sx,41 for each n > 0. If

{zan} has a convergent subsequence in A, then the pair (T'; S) has a coincidence
quasi-best prozimity point in A.

Proof. Let {zan, } be a subsequence of {z2,} such that zo,, — p € A. We
have

dist(S(A), S(B)) < d(Txan,—1,Tp) < d(Szan,—1,S5p)
S d(Spa Sx?nk) + d(Sx2nk7 S$2nk—1)-
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By Lemma 2.7, if £ — oo, we obtain that
d(Txop,—1,Tp) — dist(S(A), S(B)).
Moreover, we have

dist(S(A), S(B)) < d(Sp, Tp)
< d(Sp, Tw2p,,—1) + d(Tx2m,-1,Tp)
d(Sp, Sank) + d(TTan 1, Tp)

— dist(S(A4), S(B)),

that is,
d(Sp,Tp) = dist(S(A), S(B)).
O

Lemma 2.9. Let (A, B) be a nonempty pair of subsets of a metric space (X, d)
and let (T;S) be a QCN contraction pair defined on X. For xg € A, define
Tz, = Sxpy1 for each n > 0. Then {Sxza,}, and {Sxa,y1} are bounded
sequences in S(A) and S(B) respectively.

Proof. Since
d(Sxan, Stany1) — dist(S(A), S(B)),
it suffices to show that {Sxa,} is bounded in S(A). Assume to the contrary
that there exists Ny € N such that
d(Sxa, Szan,+1) > M, d(Sze, Szan,-1) < M,
where,

o2
1-a?
By the above assumption, we have

M — dist(S(A), S(B))

a2

M > max{ d(Szg, Sxe) + dist(S(A4), S(B)), d(Sz1, Sxo)} .

+ dist(S(A), S(B))

(S, Stang11) — dist(S(A), S(B))
0[2
+ dist(S(A), S(B))

d(Sza, Stany+1) + (@® — 1)d(Sza, STan,+1)
o2

(Sxa, Sxon,+1) = d(Tx1, Txan,)

(Sz1, Sxan,) = d(Txo, Txan,—1)

(5900,53321\/0—1)

(

(

=d
<d

SZL’(), S(EQ) + d(S.’EQ, SI'QNO,l)

d
d
d(Sxg, ng) + M.

[VARVAN
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This implies that
M — dist(S(A), S(B))
o2

+ dist(S(A), S(B)) < d(Sxg, Sza) + M,
hence,

M — (1 —a?)dist(S(A), S(B)) < a?[d(Sxg, Sxo) + M],
and,

(1—a®)M < o?d(Sxo, Sxo) + (1 — a?)dist(S(A), S(B)).

Now, it follows that
2

o
M <
1

d(Szo, Sze) + dist(S(A4), S(B)),

2
o
which contradicts the choice of M. (I

Before we state the following theorem, we recall that a subset A C X is

said to be boundedly compact if the closure of every bounded subset of A is
compact and is contained in A.

Theorem 2.10. Let (A, B) be a nonempty pair of subsets of a metric space
(X,d) such that S(A) is boundedly compact and let (T;S) be a QCN contraction
pair defined on X. If S is relatively anti-Lipschitzian and continuous on A,
then there exists p € A such that

d(Sp, Tp) = dist(S(4), S(B)).
Proof. For xg € A, define Tz, = Sxp41 for each n > 0. By Lemma 2.9, {Sxz2,}

is bounded in S(A). On the other hand, S(A) is boundedly compact, so that
there exists a subsequence {Sxay,, } of {Sx2,} such that

Sxon, — Sp,
for some p € A. We know that S is relatively anti-Lipschitzian, therefore
d(xan,,,p) < cd(Szap,,Sp) = 0, k — oo.

This implies that {z2,, } is a convergent subsequence of {x2,}. Now, the result
follows from Theorem 2.8. O

EXAMPLE 2.11. Let X := R with the usual metric. For A = (—00,0] and
B =[0,400) define T, S : X — X by

—x, 1 AUB 2z, i AUB
Tm::{ o, ifwe and Sac::{x’ ifwe

0, ow. 0, ow.

Then (T S) is a QCN contraction pair with a = £. Indeed, for all (z,y) € AxB
we have

(T~ Ty| = (y — ) < 32y~ 22) + 5(0)

S(A),S(B))-

N

= a|Sz — Sy| + (1 — a)dist

—~
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Also, T(A) = B C S(B) and T(B) = A C S(A). Moreover, S is continuous
on A and S(A) is boundedly compact in X. Besides, S is relatively anti-
Lipschitzian on AU B with ¢ = 1. In fact, for all (z,y) € A x B we have

|Sz — Sy| =2y — 2z > [z —y|.

Finally, the existence of coincidence quasi-best proximity point of the pair
(T; S) follows from Theorem 2.10; that is, there exists p € A such that

|Tp — Sp| = dist(S(A),S(B))=0o0r —p—2p=0,
which implies that p = 0. In this case, p is a fixed point of S.

In the following we supply an example which shows that there exists a co-
incidence quasi-best proximity point that is not a fixed point of S.

EXAMPLE 2.12. Let X := R with the usual metric. For A = (—o00,0] and
B =1[0,400) define T',S : X — X by

— 1), 4 € AUB 2z, 1 € AUB
Tx'—{ (z+1), if 2 and S:C::{xzfx

0, ow. 0, ow.

Then (T'; S) is a QCN contraction pair with o = % Indeed, for all (z,y) € AxB
we have
(0)
= a|Sz — Sy| + (1 — a)dist(S(A4), S(B)).
Also, T(A) = [1,+00) C S(B) and T(B) = (—o0, —1] C S(A). Moreover, S is

continuous on A and S(A) is boundedly compact in X. Besides, S is relatively
anti-Lipschitzian on AU B with ¢ = 1. In fact, for all (z,y) € A x B we have

1
ITx—TyIZ(y—x)§§(2y—2ﬂc)+

N |

—

Sz — Syl =2y — 2z > |z —yl.

Finally, the existence of coincidence quasi-best proximity point of the pair
(T'; S) follows from Theorem 2.10; that is, there exists p € A such that

|Tp — Sp| = dist(S(A),S(B))=0o0r —(p+1)—2p=0,
which implies that p = —%.

Lemma 2.13. Let (A, B) be a nonempty pair of subsets of a uniformly convex
metric space (X,d, W) such that S(A) is convex. Let (T;S) be a QCN con-
traction pair defined on X. For xg € A, define Tx, = Sxpy1 for each n > 0.
Then

d(SIQTH_Q, S.%‘gn) — 0, d(S$2n+3, S.Tgn_H) — 0.

Proof. We prove that d(Sxon42,S%2,) — 0. To the contrary, assume that there
exists €9 > 0 such that for each k > 1, there exists n, > k such that

d(SxQ’ﬂkJrQ? SmZTLk) 2 €0-
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Choose 0 <y < 1 such that £ > dist(S(A), S(B)) and choose € > 0 such that

& dist(S(A»S(B))a(w)}
S0 _ dist(S(A), S(B)), .
2 dis(S(4). 8(8)), LS
By Lemma 2.7, since d(Sxap, , STan,+1) — dist(S(A), S(B)), there exists N €
N such that

O<€<min{

d(Szan, , STon,+1) < dist(S(A4),S(B)) + ¢,
d(San, +2,5%n, +1) < dist(S(A4),S(B)) + ¢
and
d(Sxan, , STan, +2) = €0 > Y(dist(S(A4), S(B)) + ¢).
It now follows from the uniform convexity of X and the convexity of S(A) that

dist(S(A), S(B)) < d(Szaon, +1, W(STon, , STon, +2, %))
< (dist(S(A), S(B)) +&)(1 — a(y))
dist(S(A), S(B))a(y)

1—a(y)

< dist(S(A), S(B)) + (1—a(v)

— dist(S(A), S(B)),
which is a contradiction. Similarly, we see that d(Sxant3, STan1+1) — 0. O

The following Theorem guarantees the existence and convergence of coinci-
dence quasi-best proximity points for QCN contraction mappings in the setting
of uniformly convex metric spaces.

Theorem 2.14. Let (A, B) be a nonempty, closed pair of subsets of a complete
uniformly convex metric space (X,d; W) such that S(A) is convex. Let (T;S)
be a QCN contraction pair defined on X such that S is continuous on A and
relatively anti-Lipschitzian on AU B. Then there exists p € A such that

d(Sp, Tp) = dist(S(A), S(B)).
Further, if vo € A and Tz, = Sxpt1, then {xa,} converges to the coincidence

quasi-best prozimity point of (T;S).

Proof. For xg € A define Tx,, = Sx,,4+1 for each n > 0. We prove that {Szs,}
and {Sxa,+1} are Cauchy sequences. First, we verify that for each € > 0 there
exists Ny € N such that

d(SiEQl, SI2n+1) < dlSt(S(AA)7 S(B)) + g, Vi>n Z No. (*)

Assume to the contrary that there exists €y > 0 such that for each k > 1 there
exists [ > ng > k satisfying

d(Sxay,,, Ston, +1) > dist(S(A), S(B)) + o
and

d(SZ‘glk_g, ngnk+1) < dlbt(S(A), S(B)) + €9.


http://dx.doi.org/10.52547/ijmsi.17.1.27
http://ijmsi.com/article-1-1333-en.html

[ Downloaded from ijmsi.com on 2025-10-20 ]

[ DOI: 10.52547/ijmsi.17.1.27 ]

Coincidence Quasi-Best Proximity Points for QCN Mappings in Convex Metric Spaces 37

We have
dist(S(A4), S(B)) + &0 < d(Szay,, STan,+1)
< d(Sway,, Sway,—2) + d(Szar, —2, STop, 41)
< d(Szay,, Sxay,—2) + dist(S(A), S(B)) + €.
Letting &k — oo, we obtain
d(Szay,, Swan, +1) — dist(S(A), S(B)) + €o.
Moreover, we have
dist(S(A), S(B)) + €0 < d(Szay,, Ston,+1) = d(Tx2, —1,TTon,)
< ad(Sxa,—1,5%2n,) + (1 — a)dist(S(A), S(B))
= ad(Txay,—2,Txon,—1) + (1 — a)dist(S(A), S(B))
< ad(Sxay,—2,STan,—1) + (1 — a)dist(S(A), S(B)).
Therefore, by letting k — oo we obtain
dist(S(A), S(B)) + g0 < adist(S(A), S(B)) + o) + (1 — a)dist(S(A), S(B))
< dist(S(A4), S(B)) + o.
This implies that o = 1, which is a contradiction. That is, (*) holds. Now,

assume {Sx2,} is not a Cauchy sequence. Then there exists g > 0 such that
for each k > 1 there exists l > n; > k such that

d(Szay,, Szy,) > €o.
Choose 0 <y < 1 such that 2 > dist(5(A), S(B)) and choose € > 0 such that

dist(S(A), S(B))a(y) }
1—a(y) '

0 < e < min {Eﬁ(’) —dist(S(A), S(B)),

Let N € N be such that
d(Szan,, Ston,+1) < dist(S(A),S(B)) +¢€, Vnp > N
and
d(Szay,, Sxon,+1) < dist(S(A),S(B)) + ¢, Vi > ni > N.
Uniform convexity of X implies that
ist(S(A), S(B)) < d(Stan, 11, W(St20,, S, 3))
< (dist(S(A), S(B)) +&)(1 — ay)) < dist(S(A), 5(B)),

which is a contradiction. Therefore, {Sz2,} is a Cauchy sequence in S(A). By
the fact that S is relatively anti-Lipschitzian on A U B, we have

d(xar, xon) < ed(Szar, Stan) — 0, I,n — 00,
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that is, {2,} is a Cauchy sequence. Since A is complete, there exists p € A
such that x5, — p. Now, the result follows from a similar argument as in
Theorem 2.8. (I

3. QUASI-CYCLIC-NONCYCLIC RELATIVELY CONTRACTION MAPPINGS

In this section, we introduce the class of quasi-cyclic-noncyclic relatively
contraction mappings that contains the class of cyclic-noncyclic contraction
mappings as a subclass. Next, we study the existence and convergence of
coincidence best proximity points in the setting of convex metric spaces for
quasi-cyclic-noncyclic relatively contraction mappings.

Definition 3.1. Let (A4, B) be a nonempty pair of subsets of a metric space
(X,d) and T,S : X — X be two mappings. The pair (T;.5) is called a quasi-
cyclic-noncyclic relatively contraction pair if it satisfies the following conditions:
(1) (T, S) is a quasi-cyclic-noncyclic pair on X; that is,
T(4) C S(B), T(B) C S(4).
(2) For some « € (0,1) and for each (x,y) € A x B we have
d(Tz,Ty) < ad(Sz, Sy) + (1 — a)dist(A, B).
Note that in the above definition we do not have the inequality
dist(A, B) < d(Sz, Sy),
that is,
d(Tz, Ty) < d(Sz, Sy)

is not always true.
We emphasize that if S = I or if S(A) = A and S(B) = B, then the above
definition reduces to Definition 1.3.

EXAMPLE 3.2. Let X := R with the usual metric. For A = (—o0,—3] and
B = [3,+00) define T, S : X — X by

(t11), if 1€ AUB 3x+5,ifxcA
—(x ,if x
Tx:—{ and Sx:=<3x—7,if x €B
0, ow.
0, ow.

Then (T S) is a QCN relatively contraction pair with o = % Indeed, for all
(z,y) € A x B we have

[T~ Tyl = (y—2) < 3By — 30 —12) + 20
= a|Sz — Sy| + (1 — a)dist(4, B).
Also, T(A) C S(B) and T(B) C S(A).
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Lemma 3.3. Let (A, B) be a nonempty pair of subsets of a metric space
(X,d) and let (T;S) be a QCN relatively contraction pair defined on X and
dist(A, B) < dist(S(A),S(B)). For xo € A, define Tx,, = Sxpy1 for each
n > 0. Then we have

d(Sxan, Stany1) — dist(4, B).
Proof. We note that

dist(A, B) < dist(S(A),S(B)) < d(Szant1,Sont2) = d(Tx2n, TTont1)
< ad(Sxan, Stant1) + (1 — a)dist(A, B)
= ad(Tzon—1,Txa,) + (1 — a)dist(A4, B)
< alad(STan—1,STa,) + (1 — a)dist(A, B))
+ (1 — a)dist(A, B)
= a?d(Sxan_1,ST2,) + (1 — a?)dist(A, B)
= a?d(Tx2,—2, Txon_1) + (1 — a?)dist(A, B)

IN

< a®™d(Txg, Tw1) + (1 — o?)dist(A, B).
Now, if n — oo, we conclude that
d(Sxan, Stany1) — dist(4, B).
d
Remark 3.4. If the pair (T;5) is a QCN relatively contraction pair such that
S(A) C A and S(B) C B,

then we have

dist(A, B) < dist(S(A),S(B)).
Thus, by this assumption, the Lemma holds true.
Theorem 3.5. Let (A, B) be a nonempty pair of subsets of a metric space
(X,d) and let (T;S) be a QCN relatively contraction pair defined on X and
dist(A, B) < dist(S(A), S(B)). Assume S is continuous on A. For xzy € A,

define Tz, = Sy for each n > 0. If {x2,} has a convergent subsequence in
A, then the pair (T;S) has a coincidence best proximity point in A.

Proof. Let {a,, } be a subsequence of {z3,} such that z3,, — p € A. we have
dist(A, B) < dist(S(A), S(B)) < d(Txan,—1,Tp) < d(Szapn,—1,5p)
< d(Sp, Sxan, ) + d(Sxan,, STan,—1)-
By Lemma 3.3, if £ — oo, we obtain that

d(Txon,—1,Tp) — dist(A, B).
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Moreover,

dist(A, B) < dist(S(A), S(B)) < d(Sp, Tp)
d( p’ T:Z:an_l) + d(TfL'an_l, Tp)
d(Sp, Sxap,,) + d(Tw2,, —1,Tp)

dist(4, B),

INIA

that is,
d(Sp,Tp) = dist(A4, B).
|

Lemma 3.6. Let (A, B) be a nonempty pair of subsets of a metric space
(X, d). Suppose (T;85) is a QCN relatively contraction pair defined on X and
dist(A, B) < dist(S(A),S(B)). For xo € A, define Tz, = Sxpy1 for each
n > 0. Then {Sx2,}, and {Szant+1} are bounded sequences in S(A) and S(B)
respectively.

Proof. Since

d(Sxan, Stani1) — dist(A4, B),
it suffices to verify that {Sxa,} is bounded in S(A). Assume to the contrary
that there exists Ny € N such that

d(S.%‘Q,SmgNOJrl) > ]\47 d(Sl’Q,S.%‘QNO,l) < M,

where,
2
M > max {1062d

(Sxg, Sxo) + dist(A, B), d(Sz, Smo)} .

By the above assumption, we have
M — dist(A, B) d(Sza, Szan,+1) — dist(A, B)
a? a2
d(Swza, Swany+1) + (® — 1)d(Sxa, STan,+1)
2
Sta, Stony+1) = d(Tx1, Tran,)
Sx1, Swan,) = d(Txo, Txan,—1)

(
(
(Sxo, STan,—1)
(
(

+dist(A4, B) <

+ dist(A, B)

=d
<d

IN

Szo,Sx2) + d(Sz2, ST2N,—1)

d
d
d SI(), Sl’g) + M.

IN

This implies that

M —dist(A, B
% + dist(A, B) < d(Sxzo, Sza) + M,

or,

M — (1 — a?)dist(A, B) < o?[d(Sxo, Sxa) + M].
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and finally,
(1 —a®)M < a?d(Sx, Sxa) + (1 — o?)dist(4, B).

Now, we conclude that

2

(07 .
M < md(S.’IIQ,Sl‘Q) + dlSt(A,B),

which is a contradiction by the choice of M. (I

Theorem 3.7. Let (A, B) be a nonempty pair of subsets of a metric space
(X,d) such that S(A) is boundedly compact. Suppose (T;S) is a QCN rela-
tively contraction pair defined on X and dist(A, B) < dist(S(A), S(B)). If S is
relatively anti-Lipschitzian and continuous on A, then there exists p € A such
that

d(Sp,Tp) = dist(A4, B).

Proof. For xg € A, define Tx,, = Sx,,41 for each n > 0. According to Lemma
3.6, {Sxza,} is bounded in S(A), on the other hand S(A) is boundedly compact,
so that there exists a subsequence {Sxa,, } of {Sza,} such that

Sxon, — Sp,
for some p € A. We know that S is relatively anti-Lipschitzian, therefore
d(x2n,, ,p) < cd(Sxapn,,Sp) = 0, k — oco.

This implies that {z2,, } is a convergent subsequence of {z, }, hence the result
follows from Theorem 3.5. (Il

In the following we give examples to show that there exists a coincidence
best proximity point that is not a fixed point for S.

EXAMPLE 3.8. Let X := R with the usual metric. For A = (—o0,—3] and
B =[3,4+00) define T, S : X — X by

) 20 +6, if re A
3—z,if r€ AUB
Tx := and Sz:=(2x, if r€B
0, ow.
0, ow.

Then (T;S) is a QCN relatively contraction pair with a = . Indeed, for all
(z,y) € A x B we have

1 1
[Tz =Tyl = (y - z) < 5(2y — 22— 6) + 5(6)

= o|Sz — Sy| + (1 — a)dist(A4, B).
Also, T(A) C S(B) and T(B) C S(A). Finally, the existence of coincidence
best proximity point of the pair (7'; S) follows from Theorem 3.7; that is, there
exists p € A such that

|Tp — Sp| =dist(A,B) =00r 3—p—2p—6 =6,
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which implies that p = —3.

EXAMPLE 3.9. Let X := R with the usual metric. For A = (—o0,—4] and
B =[4,4+00) define T, S : X — X by

] dx+16, if x € A
4—z, ifre AUB .
Tz := and Sr:= 4x —8, if v € B
0, ow.
0, ow.

Then (T;5) is a QCN relatively contraction pair with o = i. Indeed, for all
(z,y) € A x B we have

1
(T~ Tyl = (y — 2) < {4y — 4z —24) + >(8)

= a|Sx — Sy| + (1 — a)dist(A4, B).

Also, T(A) C S(B) and T(B) C S(A). Finally, the existence of coincidence
best proximity point of the pair (T'; S) follows from Theorem 3.7; that is, there
exists p € A such that

|Tp — Sp| = dist(A,B) =8 or 4 —p — 4p — 16 = 8,
which implies that p = —4.

Lemma 3.10. Let (A, B) be a nonempty pair of subsets of a uniformly convex
metric space (X,d, W) such that S(A) is convex. Suppose (T;S) is a QCN
relatively contraction pair defined on X and dist(A, B) < dist(S(A), S(B)).
For xg € A, define Txy, = Sxpy1 for eachn > 0. Then

d(S$2n+27 S:L‘gn) — 07 d(S$2n+3, Sx2n+1) — 0.

Proof. We prove that d(Szapy2, STe,) — 0. Assume to the contrary that there
exists €9 > 0 such that for each k > 1, there exists ny > k such that

d(STon,+2, ST2p,) > €o-
Choose 0 <y < 1 such that * > dist(A, B) and choose € > 0 such that
dist(A4, B)a(7) }
l—a(y) J

By Lemma 3.3, we know that d(Szap, , STan, +1) — dist(A, B), so there exists
N € N such that

0 < € < min {(;0 — dist(A4, B),

d(Sxap, , Ston, +1) < dist(A, B) + ¢,

d(S.Ignk+2, Sllfgnk_;,_l) S dlSt(A,B) +e
and
d(San,, STan,+2) > €0 > y(dist(A4, B) +¢).
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It now follows from the uniformly convexity of X and the convexity of S(A)
that

dist(A, B) < dist(S(A), S(B)) < d(Sx2n,+1, W(STan, , STan, 12, %))

< (dist(A4, B) +&)(1 — a(y))

< dist(A, B) +
@B+ ==

(1—a(y)
= dist(A, B),
which is a contradiction. Similarly, we see that d(Sxzay,43, STon+1) — 0. O

The following Theorem guarantees the existence and convergence of coin-
cidence best proximity points for QCN relatively contraction mappings in the
setting of uniformly convex metric spaces.

Theorem 3.11. Let (A, B) be a nonempty, closed pair of subsets of a com-
plete uniformly convexr metric space (X, d; W) such that S(A) is convex. Sup-
pose (T;S) is a QCN relatively contraction pair defined on X such that S
is continuous on A and relatively anti-Lipschitzian on AU B. Assume that
dist(A, B) < dist(S(A), S(B)). Then there exists p € A such that

d(Sp,Tp) = dist(A, B).

Further, if xg € A and Tx,, = Sxpi1, then {x2,} converges to the coincidence
best proximity point of (T;.5).

Proof. For g € A define Tx,, = Sx,,41 for each n > 0. We prove that {Szs,}
and {Sza,41} are Cauchy sequences. First, we verify that for each € > 0 there
exists Ny € N such that

d(Sza1, Stons1) < dist(A, B) +¢, VI >n > No. (%)

Assume the contrary. Then there exists g > 0 such that for each k > 1 there
exists I > ny > k satisfying

d(S.TQlk,Sa?an+1) > diSt(A, B) + €0, d(S.rQlk_Q, Sxan—&-l) < diSt(A, B) + €o-
Note that

diSt(A, B) +e9 < d(nglk,ngnk+1)
< d(Szay,, Star,—2) + d(Sway, —2, STon,+1)
< d(nglk, S.’L‘Qlk,2> + diSt(A, B) + €p.

Letting k — oo, we obtain

d(5$21k75$2nk+1) — dlSt(A, B) + €o.-
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Moreover, we have
diSt(A, B) +e0 < d(Sl‘Qlk,S.Ian+1) = d(Tl‘Qlk_l, Txgnk)
< ad(Sxay,—1,5%2n,) + (1 — a)dist(A, B)
= Oéd(Tl‘g[k_g,Tl‘gnk_l) + (1 — a)dist(A, B)
< ad(Sxay,—2,STan,—1) + (1 — a)dist(A4, B).
Therefore, by letting £ — oo we obtain
dist(A, B) 4+ g0 < a(dist(A, B) + &) + (1 — a)dist(A, B) < dist(A4, B) + <.

This implies that & = 1, which is a contradiction. That is, (*) holds. Now,
assume that {Sza,} is not a Cauchy sequence. Then there exists €9 > 0 such
that for each k > 1 there exists [, > ny > k such that

d(nglk, ank) > €0.
Choose 0 <y < 1 such that =* > dist(A, B) and choose £ > 0 such that

ist(A, B
0 < & < min {60 — dist(4, B), dlst(,)a(’y)} .
g 1—a(y)
Let N € N be such that
d(Szap, , Ston, +1) < dist(A, B) + ¢, Vny > N
and
d(Szay,, Sxon,+1) < dist(A4, B) + ¢, Vi > ny > N.
Uniformly convexity of X implies that
1
dist(A, B) < dist(S(A), S(B)) < d(Sx2n,+1, W(Sx2n, , STa,, 5))
< (dist(A, B) +¢)(1 — a(y)) < dist(4, B),

which is a contradiction. Therefore, {Sza,} is a Cauchy sequence in S(4). By
the fact that .S is relatively anti-Lipschitzian on A U B, we have

d(zar, xon) < cd(Szar, Stan) — 0, I,n — o0,

that is, {2, } is Cauchy. Since A is complete, there exists p € A such that
ZTo, — p. Now, the result follows from a similar argument as in the proof of
Theorem 3.5. (]
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