[ Downloaded from ijmsi.com on 2025-10-20 ]

[ DOI: 10.52547/ijmsi.17.1.11 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 17, No. 1 (2022), pp 11-26
DOL: 10.52547/ijmsi.17.1.11

Diophantine Equations Related with
Linear Binary Recurrences

Emrah Kih¢?®, Ilker Akkus®, Nege Omiir®

?Department of Mathematics, TOBB University of Economics and
Technology, TR-06560 Ankara, Turkey

®Department of Mathematics, Faculty of Arts and Science, Kirikkale
University, TR-71450 Kirikkale, Turkey

“Department of Mathematics, Faculty of Arts and Science, Kocaeli
University, TR-41380 Kocaeli, Turkey

E-mail: ekilic@etu.edu.tr
E-mail: iakkus.tr@gmail.com
E-mail: neseomur@kocaeli.edu.tr

ABSTRACT. In this paper we find all solutions of four kinds of the Dio-
phantine equations

:(32ina:yfy2ix:[)andx2ivtxyfy2iy:0,
for an odd number ¢, and,

2 2 _ 2 2 _

z*+Vizy+y* —ax=0and 2z £ Vizy+y~ —y =0,

for an even number ¢, where V;, is a generalized Lucas number. This

paper continues and extends a previous work of Bahramian and Daghigh.

Keywords: Linear recurrences, Generalized Fibonacci and Lucas sequences,

Diophantine equations, Continued fractions.

2000 Mathematics subject classification: 11B37, 11B39, 11D04, 30B70.

*Corresponding Author

Received 7 May 2018; Accepted 1 October 2019
(©2022 Academic Center for Education, Culture and Research TMU
11


http://dx.doi.org/10.52547/ijmsi.17.1.11
http://ijmsi.com/article-1-1319-en.html

[ Downloaded from ijmsi.com on 2025-10-20 ]

[ DOI: 10.52547/ijmsi.17.1.11 ]

12 E. Kilg, I. Akkus, N. Omiir

1. INTRODUCTION

Since ancient times mathematicians tried to solve equations over the inte-
gers. Some of these equations are called diophantine equations. Diophantine
equations have been studied by many authors to date. In 1909, A. Thue proved
the following important theorem:

Let f = apz™ + ap_12"" 1 + -+ + a1z + ap be an irreducible
polynomial of degree > 3 with integer coefficients. Consider
the corresponding homogeneous polynomial

F(z,y) = ana™ + 12"ty + -+ arzy™ + agy™.

If m is a nonzero integer, then the equation F(x,y) = m has
either no solution or only a finite number of solutions in inte-
gers.

This result is in contrast to the situation when the degree of F'is n = 2. In
this case, if F(x,y) = 22 — Dy?, where D is a nonsquare positive integer, then

2 — Dy? = m has either

for all nonzero integers m, the general Pell’s equation x
no solution or it has infinitely many integral solutions [2].
Let p be a nonzero integer. The generalized Fibonacci and Lucas numbers

are defined by
Un+1 = pUn + Unfl and Vn+1 - an + anlv

where Uy =0, Uy = 1 and Vy = 2, V] = p, respectively. When p=1, U, = F},
(the n** Fibonacci number) and V;, = L,, (the n'" Lucas number). The Binet
formulae are

B a” — ﬂn

U, = Py

where (a, 8) := (<p+ \/p? +4> /2, <p —\/p? +4> /2) .
Also we note that U_,, = (=1)"*'U,, and V_,, = (—=1)"V,, for n > 0. Kilig
and Stanica [8] showed that for any integers ¢ and n,

and Vi =a" + 6",

U = V;Ut(nfl) + (_1)t+1Ut(n72)7 (11)
Vin = ‘/t‘/t(n—l) + (71)t+1‘/t(n—2)'

It is also known that
Ut(n—‘,—l)Ut(n—l) - Utzn = (_1)t(n+1)+1 Ut2 (12)

According to Dickson ([4], p. 405), Lucas proved that if = and y are consec-
utive Fibonacci numbers, then (z,y) is a lattice point on one of the hyperbolas
y? — 2y — 22 = +1, and Wasteels proved the converse in 1902. Interest in con-
ics whose equations are satisfied by pairs of successive terms of linear recursive
sequences has been rekindled.
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In [9], Kimberling defined a Fibonacci hyperbola and solved some of them.
For example, he considered the following type hyperbolas

po(z,y) =22 + (=1)" " Loy + (=1)"y* + F2 =0, forn=1,2,3,....

In [11], McDaniel proved that, if P > 0 and x, y are positive integers, then
the pair (x,%) is a solution of y?> — Pzy — 22 = £1 if and only if there exists a
positive integer n such that x = U,, and y = U, 1.

In [12], Melham generalized McDaniel’s results and obtained new ones. For
example, if m is a fixed even integer, then the points with integer coordinates on
the conics y? — V,,zy+a? = £U2 are precisely the pairs (z,y) = £(Upn, Uptm)-

Marlewski and Zarzycki [10] showed that for k& € ZT, the equation x? —
kxy + 3% + = = 0 has an infinite number of positive integer solutions x and y
if and only if &k = 3.

In [7], Kilig and Omiir considered all given results on special conics men-
tioned in [11, 12] and then gave more general results.

Bahramian and Daghigh [3] proved that for k € Z, the equations z2 + kxy —
y? & 2 = 0 have an infinite number of positive integer solutions 2 and y, and,
they gave their solutions in terms of a generalized Fibonacci sequence. Also
some authors have studied and solved certain similar equations, for more details
see [1, 5, 6, 14].

In this paper, we find all solutions of the following four kinds of Diophantine
equations:

(1) For odd ¢,

)2+ Viey—y* =0 and i) 2®+Viey —y* £y =0.
(2) For even t,

iii) 2* £ Vizy +y> —2 =0 and ) 2>+ Vizy + > —y =0.

The case t = 1 of (1.7) and, that is V; = p, was studied by Bahramian and
Daghigh in [3]. The Diophantine equations (1.i¢)—(2.iv) will be examined and
solved for the first time in this study according to our best knowledge.

We shall solve these equations by the equation of Thue and continued frac-
tion representation.

2. THE DIOPHANTINE EQUATIONS

In this section, we show that the Diophantine equations given by (1.7)—
(2.7v) mentioned in the introduction section are solvable in integers for certain
integers t. Before proving this we give some preliminary results.

Let D be a positive integer not a perfect square. Suppose that VD is
written as an infinite simple continued fraction /D = [ag, a1, as, - - - |. For each
nonnegative n, the rational number [ag, a1, a2, ,a,] = h,/ky is called the


http://dx.doi.org/10.52547/ijmsi.17.1.11
http://ijmsi.com/article-1-1319-en.html

[ Downloaded from ijmsi.com on 2025-10-20 ]

[ DOI: 10.52547/ijmsi.17.1.11 ]

14 E. Kilg, I. Akkus, N. Omiir

n'™ convergent to the infinite simple continued fraction [ag, ay,az,---]. Then

we get for n > 1,
hn = aphp1+hn2, h_1=1, hg=ao, (21)
kn = apnkp_1+ kn—Qv k_y= 07 kO =1

If V2 + 4 is not a square for any integer t, we have the infinite simple
continued fraction representation of y/V;2 + 4 as

Ve V=12 L1, (V- 1)/2, 2V if Vi is odd,

VVE+4= (2.2)

[v;, V./2, 21/;} if V; is even.

The next two theorems give us the convergents of infinite simple continued
fraction representation of \/V;? + 4 via terms of the sequence {Uy,}. Similar
results are proved in [3].

Theorem 2.1. Let V; be a positive odd integer and h., [k, be the n'™ convergent
to the infinite simple continued fraction of \/V;* +4. Forn >0

) hion = (1) Usps + Uen+2)t)/Us,

) klOn = U(6n+1)t/Ut7

) hion+a = 1/2((=1) M Ugni2)e + Ugentare)/Us,
)

)

)

o T

[}

kionsa = 1/2(Uen+3)t/Us),
hionts = ((=1)"T' Uign+ayt + Uion+6)e)/Ut,
k1on+s = Uen+s)ye/Ut-

e

f

Proof. We give only some sketches for the proof of (a) and (b). Since V; is a
positive odd integer and by (2.2), we have that for n > 1

ag =Vi, asp—a = (Ve —1)/2, asp—3 =1,
A5n—2 = ]-a A5n—1 = (‘/t - 1)/27 a5n = 2‘/;

The second order recursive sequences {h, } and {k,} given in (2.1) could be
written in matrix equality form by using their recursions, for n > 1

hn kn _ Qp 1 hnfl knfl
hnfl knfl B 1 0 hn72 kn72 ’

an, 1 h k
n d Pn — n n
1 0 :| an |: hn— 1 kn— 1

P, = A,P,_1. Here we need hyg, and kyg,. For this, first we compute P,

Let A, = { ] . Then, for n > 1, we have

and then take 2n instead of n. Thus we have the conclusions. O
We have the following result without proof.

Theorem 2.2. Let V; be a positive even integer and hy, [k, be the n' conver-
gent to the infinite simple continued fraction of \/V,? +4. Forn >0,
a) hon = ((=1)" Usps + Ugzns2)t)/Ut,
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b) kan = Ugany1ye/Us.
First we will show that all solutions of the equation
22— Viay—y*+x=0 (2.3)
are
(U3,4/UZ, Uizn-1)tUznt /UZ) ,
(U3 /U2, =U2ntUzn 41 /U?)

2 9 (2.4)
( U 2n+1)t/Ut y Uan+1)tUan+2)t/Us ) ,

( U(2n+1 t/Ut ) U2ntU 2n+1)t/U )

To prove this claim, first we need the following lemma whose proof is straight-
forward.

Lemma 2.3. If (x,y) is a solution of the equation (2.3), then (x,—Vix —y)
and (Viy — x — 1,y) are also solutions of (2.3).

Clearly (0,0) is a solution of (2.3), from Lemma 2.3, a sequence of solutions
of (2.3) is

(0,0), (=1,0), (=1,Vs), (V2 Vi), (VZ2,-Va(VZ+1)),...

and these solutions can be rewritten as

Uz UgU, Ut UgUy
= _—— — _1 = __—
0.0 = (G-, Lo = (-5 =T,
U2 UUy U3z, UUs
(_17‘/1‘.) = (_U%) Ut2 ) (‘/t2a‘/t) = Ut2t7 Ut2 P

Theorem 2.4. For any integer n and odd t, the pairs in (2.4) satisfy x> —
Vizy —y?> +x =0.

Proof. (By induction on n.) For n = 0, it is seen that (0,0) = (U3 /U2, —UgUy; /UZ)
is a solution of (2.3). Suppose that the pair (U3,,/UZ, —UznUs2n+1)/UZ) sat-
isfies (2.3). By Lemma 2.3 and (1.2), we have that

(x,y) = (Vt (_U2tnUt(2n+1)/Ut2> - Uzzm/UE -1, _U2tnUt(2n+1)/Ut2)
= (~Uonsn /U2, ~UstnUsons1)/UF)
is a solution of (2.3). By Lemma 2.3 and since

(7Ut2(2n+1)/Ut27 *UQtnUt(2n+1)/Ut2)

is a solution of (2.3), we have that

(z,y) = ( t(2n+1 /Ut» <_Ut2(2n+l)/Ut2) - (_U2tnUt(2n+1)/Ut2))

= < Honi)/Uss Usans1)Usant2) /Ut)
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is also a solution of (2.3). Similarly, if (—UT?(%H)/UE, Ut(2n+1)U2t(n+1)/Ut2) sat-
isfies (2.3), then (Ugt(nJrl)/Uf,Ut(2n+1)U2t(n+1)/Ut2) satisfies (2.3). If
(U22t(n+1)/Uf, Ut(2n+1)U2t(n+1)/Ut2) satisfies (2.3) and
(U22t(n+1)/Ut2,Ut(2n+1)Ugt(n+1)/UE) is a solution of (2.3), then
(Ugt(nﬂ)/Uf, ~Ust(n1)Us(2nt3)/U?) satisfies (2.3).

For n < 0, the proof could be similarly obtained by using the relations

U_, = (=1)""U, and V_, = (=1)"V,,. O

Now we prove that the solutions stated in (2.4) are all the solutions of (2.3).
First we consider the positive solutions. By the method used in (Theorem 1 of
[10], Lemma 3 of [5] and Theorem 3.3 of [3]), proves the following theorem.

Theorem 2.5. If positive integers x and y satisfy the equation
2?2 = Viay —y* +x =0, (2.5)
then there exist positive integers c,e such that x = c¢*, y = ce and ged (¢, e) = 1.

Now we need some properties of the Pell equation 22 — Dy? = N, where D
is a given square-free positive integer and N is a given integer.
We recall the following three results from [13]:

Theorem 2.6. Let 22 — Dy = N be fulfilled for some integers xo,yo and
a2 — Db% =1 for some integers ag,bo. If w = —i—yo\/ﬁ, j=ag +boV/D, then
for any integer n, the pair (x,,y,) satisfying the equation x, + ynvVD = wj™
satisfies the equation x> — Dy = N.

Theorem 2.7. Let N be an integer satisfied |[N| < /D. Then any positive
integer solution (s,t) of 22 — Dy? = N with gcd(s,t) = 1 satisfies s = hy,
t = k, for some positive integer n, where Z—: is the n'" convergent to the

infinite simple continued fraction of VD = [ag, a1, ag, ...].

Theorem 2.8. Let [ag,a1,as, -] be the infinite simple continued fraction of
VD and suppose that m,, and g, are two sequences given by

Mp+1 = QApQp — My, Mo = 07
i1 = (D=m2)/an, qo=1

Then
a) my, and g, are integers for any positive integer n,
b) h2 — Dk2 = (=1)"*1q,.1 for any integer n > —1.

Now we are ready to prove the fact that all positive solutions of the equation
(2.5) are in the form (z,y) = (U3, /UZ, Uy2n—1)U2tn/U?) . Using Theorem 2.5,

we note that there exist positive integers ¢ and e such that = ¢2, y = ce and
ged (¢, e) = 1. Substituting them in equation (2.5), we get
A —Vice—e?+1=0. (2.6)
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We can consider this equation as a quadratic equation with respect to the inde-
terminate c¢. This equation has integer solutions if and only if A = (Vt2 + 4) e2—
4 is a square. Then there exists an integer f such that

2= (V2 +4)e? = -4 (2.7)

From (2.6), we get
c=Viet f) /2. (2.8)

Now we solve the equation (2.7). First we assume that V; is odd. From the
equation (2.2), we have

JVE+i= |V -2 1 L (G-1)/2, 20,

For n > 1, define

ap =V, asn—a = (Vi = 1)/2, asn—3 =1,
asn—2 =1, asn—1 = (V; = 1)/2, as, =2V,.
Then by Theorem 2.8, we get two eventually periodic sequences

{mn}%ozo = {07‘/1% ‘/t - 272a‘/t - 27‘/75}

and

{(_1)n+1Qn+1}zo:71 = {17 _47 W? _‘/;‘/74a _1747 _‘/;57 ‘/fm _4a 1} . (29)

Now we assume that (f,e) is a positive solution of the equation (2.7). From
(2.7), we deduce that ged(f,e) = 1 or 2. For the sequence in (2.9), Theorem
2.8 implies that for all n > 0

h%On - (‘/;‘/2 + 4)k%0n = _47 (210)
h%0n+4 - (V2 + 4)’“%0714-4 = -1,
honss — (V2 + k000 = —4.

Now from the equation (2.10) we conclude that
(2h1on+a)? — (V2 + 4)(2k10n1a)” = —4.
Moreover the solutions of the equation (2.7) are

(f,e) = (hion: kion)s (2hiont4,2k10n+4), (h1on+s, kion+s), 1 > 0.

From the equation (2.8), the solutions (c, e) are of the forms

((Vikion + hion)/2, kion), (2.11)
(Vikion+a + Rion+a, 2Ki0n+4),
((Vikion+s + hion+8)/2, kionts)

for all n > 0. Now using Theorem 2.1 and rearranging the equation (2.11), we
have

(c,e) = (ViUgnsye + (=1 Usnt + Unt2)t)/2Uts Ugent1y¢/Ut)
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Utn+2)t/Uts Uent1)t/Ut),

1 1 1
Vi(5U(en+3)t) + 5((_1)t+1U(6n+2)t + Uton+ay))/Ut, 2(§U(6n+3)t/Ut))

2
Utn+4)t/Uts Uent3)t/Ut),
(ViU(6n+s)t + (_1)t+1U(6n+4)t + Uen+6)t)/2Ut, Uen+5)t/Us)
= (Un+6)t/Uts Unt5)t/Ut),
2

and finally from Theorem 2.5, we get (z,y) = (c¢*, ce). For each solutions (¢, e),
we have the following three pairs

(x’ y) = (U(26n+2)t/Ut27 U(6n+1)tU(6n+2)t/Ut2),
(Ulsnsaye/Uts UtentayUtontay/U?),
(Usn+6)0/Uzs Uton+)eUton+oye/U7)

and therefore (z,y) = (U3,,,/U?, Uyan—1)Ua2in/U}) for all positive integer n.
By the above results, we obtain the following result.

o~ o~ o~ o~

Theorem 2.9. If V; is a positive odd integer, then every positive solution of
2? — Vizy —y? + 2 =0 is given by (x,y) = (U3,,/U?, Uan-1)tUant/U7) -

Now we consider the case when V; is even. In this case from the equation

(2.2), we have
VVE+4= Vi Vi 2]

ap = Vi, aont1 = Vi/2, aspni2 =2V, n>0.

We get two eventually periodic sequences

{mn}iZo ={0,V2}

Let

and

{1 gy} = {T, =4}
From this and Theorem 2.8, we have

Moreover in this case, all solutions of the equation (2.7) are (f,e) = (han, k2n),
and using the equation (2.8), we get (¢, e) = ((Vikan + han)/2, k2n). But from
Theorem 2.2, we know that hy,, = ((=1)""'Uznt + Ugny2)) /Ur and kop =
Utzn+1)¢/Us. Substituting them into the equation (2.8), we get

(c,e) = (ViU2n+1ye + (=)' Uspe + Uant2)t)/2Ut, Uan 41yt /Ut).

Therefore (z,y) = (c?,ce) = (U(22n+2)t/Ut2,U(2n+1)tU(2n+2)t/Uf). Thus have
the following theorem.

Theorem 2.10. IfV; is a positive even integer, then every positive solution of
2 — Vizy —y* +x = 0 is given by (z,y) = (U3, /UZ, Uan—1):U2nt/U7) -


http://dx.doi.org/10.52547/ijmsi.17.1.11
http://ijmsi.com/article-1-1319-en.html

[ Downloaded from ijmsi.com on 2025-10-20 ]

[ DOI: 10.52547/ijmsi.17.1.11 ]

Diophantine Equations Related with Linear Binary Recurrences 19

Now we find all (not necessarily positive) solutions of the equation z? —

Vizy —y*+x = 0. First assume that 2 > 0 and y < 0. By substituting y — —y
in the last equation, that is we consider the equation 22 + Vizy — 32 +2 =0
and so we already its all positive solutions

(.’t, y) = (U22nt/Ut2a UQntU(2n+1)t/Ut2) .

Similarly if < 0 and y > 0, then by substituting + — —x and considering the
equation 22 + Vizy — y? — x = 0, we have

(2.9) = (U /U2 UnsiyUgansa/UE)

Finally if x < 0 and y < 0, then similarly by substituting + — —x and y — —y,
that is we consider the equation 2% — Viay — y?> — = 0 and so we have

(:z:,y) = (U(22n+1)t/Ut2, UQm‘,U(2n+1)t/Ut2) .

Using the above discussions we have the result:

Theorem 2.11. For odd t, all solutions of the equation x> —Vizy —y?> +x =0
are given by
(U22nt/Uth U(?nfl)tUQnt/UtQ) s
(U22nt/Ut27 _UQntU(2n+1)t/Ut2) s
(7U(22n+1)t/Ut27 U(2n+1)tU(2n+2)t/Uf) ,
<7U(22n+1)t/UtZﬂ 7U2ntU(2n+1)t/UE) .
Any solution of the equations 2% + Vizy — y? £ 2 = 0 corresponds to the

solution of the equation 2 — Viay — 32 + = = 0. We summarize our earlier
results and related other unexpressed results related with them as follows:
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Equation

‘ Solutions

22 —Vizy —y> +2=0

(U22tn/U2£27 Ut(2n71)U2tn/U1§2)
(U22tn/Ut27 _UQtTLUt(2n+1)/Ut2)
<_U152(27L+1)/Ut27 Ut(2n+1)Ut(2n+2)/Uf)

(_Ut2(2n+1)/Ut27 _U2tnUt(2n+1)/Ut2>

2?4 Vizy —y> +2x=0

(U22tn/Ut27 U2tnUt(2n+1)/Ut2)
(U3 /U2, =Usian—1)Usen /UF)

<_U152(2n+1)/Ut27 U2tnUt(2n+1)/Ut2>

(_Ut2(2n+1)/Ut27 _Ut(2n+1)Ut(2n+2)/Ut2)

x2—‘/}xy—y2—aj:()

(Ut2(2n+1)/Uth U2tnUt(2n+1)/Ut2)

(Ut2(2n+1)/U1527 _Ut(2n+1)Ut(2n+2)/UE)
(_U22tn/Ut27 UZtnUt(2n+1)/Ut2)

(_U22tn/Ut2a _Ut(anl)UQtn/Utz)

224+ Vizy—y?—2=0

(Ut2(2n+1)/Ut27 Ut(2n+1)Ut(2n+2)/Ut2)

(Ut2(2n+1)/Ut27 _UQtnUt(Qn—',-l)/Utz)

(_U22tn/Ut23 Ut(2n—1)U2tn/Ut2)

(_U22tn/Ut27 _U2tnUt(2n+1)/Ut2)

TABLE 1. The solutions of the equationsz? + Vizy — %> £ 2 = 0.

Now we will prove that all solutions of the equation

are of the forms

2 —Vioy —y* +y=0

(2.12)
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(Ut(2n+1 Us(2nt2)/Uf t(2n+1)/Ut)
Ut(2n 1) U2tn/Ut2’ U2tn/U2)
Uren+1)Uain /U, U3, /UZ) .

UQtnUt(Qn—i-l)/ t(2n+1)/Ut2) ) (2.13)
(
(-

For later use, we need the following lemma.

Lemma 2.12. If (z,y) is a solution of the equation x* —V,zy—y?+y = 0, then
the solutions of the same equation are the pairs (Vyy — x,y) and (x, —Viz —y + 1).

Theorem 2.13. For any integer n and odd t, the pairs in (2.13) satisfy the
equation x% — Vizy —y?> +y = 0.

Proof. The proof is similar to the proof of Theorem 2.4. O

Now we shall give the following theorem whose proof is similar to the proof
of Theorem 2.5.

Theorem 2.14. If positive integers x and y satisfy the equation 22 — Vixy —
y? +y = 0, then there exist positive integers c,e such that x = ce, y = c? and
ged (¢, e) = 1.

We recall the following auxiliary lemma from [7].

Lemma 2.15. If V2 + 4 is square-free, then for odd t, the integer solutions of
(V;2 + 4) 2?2 + 4U? = y*U? are precisely the pairs (U, £Varn) -

Theorem 2.16. For any integer n and odd t, all solutions of the equation
22 —Vizy —y?+y =0 are

(Ut(2n+1)Ut(2n+2 /Ut ) 2n+1)/Ut )
(—UQtnUt(zn+1)/Ut2, U,52(2n+1)/Ut2> ;

(Ut(2n—1)U2tn/Ut2’ 7U22tn/Utz) )

(7Ut(2n+1)U2tn/Ut2a 7U22tn/Ut2) :
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Proof. Using Theorem 2.14, z = ce, y = ¢? such that ged (c,e) = 1 satisfy the

equation 22 — Viay — y? +y = 0. Then, we have

22 —Vile—ct 42 = 0,

A4+ Vice—e?—1 = 0. (2.14)

The last equation has integer solutions if and only if A = (V;:2 + 4) e2—4isa
square. Then there exists an integer f such that

(V2 +4)e* +4=f> (2.15)
From Lemma 2.15, note that all positive solutions of (2.15) are

(67 f) = (U2tn/Ut7 Vv?tn) .
From (2.14), we write
= (Viex 1) /2

and (c,e) = (Ut(Qn_l)/Ut, Ugtn/Ut). From Theorem 2.14, we get
(l’, y) = (Ut(2n—1)U2tn/Ut23 U152(2n_1)/U152) .

Therefore (z,y) = (Ut(2n+1)Ut(2n+2)/Ut2, Ut2(2n+1)/Ut2) is a solution of the
equation 22 —V,xy—y?+y = 0. From Lemma 2.12 and Theorem 2.13, the other

claims are obtained. There is no other solution than those shown in Theorem
2.11. O

Any solution of the equations 22 + Vizy — y?> &y = 0 corresponds to the
solution of the equation z? — Viazy — y? +y = 0. We can summarize and state
our earlier and unexpressed results as:
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Equation ‘ Solutions ‘

(Ut(2n+1)Ut(2n+2)/Ut27 Uf(gnJrl)/UtZ)

(_UQtnUt(2n+1)/U1527 Ut2(2n+1)/Ut2)
z* = Vizy —y* +y=0

(Ut(2n—1)U2tn/Ut2a _U22tn/Ut2)

(=Uions1)Ustn /UZ, —U3,,, JU?)
(U2tnUt(2n+1)/Ut27 U,?(gn+1)/UtZ)

—Uiant1)Usant2) /UZ Uf(2n+1)/Uf)
2?4+ Vizy —y* +y =0

(UatnUszn 1) /UE, —Usy, [ U7)

(=Uion—1)U2tn /UZ, U3, JU?)
(UQtnUt(2n+1)/Ut27 U22tn/U152)

(_Ut(anl)U%n/UtQ? U22tn/Ut2)

2? = Vixy —y* —y =0
(UQtnUt(2n+1)/U152, _Ut2(2n+1)/U152)

(_Ut(2n+1)Ut(2n+2)/Ut27 _Ut2(2n+1)/Ut2)
(UZtnUt(2n—1)/UtQa U22tn/Ut2)

(=U2tnUs(2ns1)/U?, U3y, JU?)

? +Vizy —y* —y =0
(Ut(2n+1)Ut(2n+2)/Ut27 _Ut2(2n+1)/Ut2)

(*U2tnUt(2n+1)/Ut27 7Uf,2(2n+1)/Utz>

TABLE 2. The solutions of the equations z* + Vixy — y? +y = 0.

For even t, we will find all the solutions of the equations z2+V,zy+y%>—2 = 0
and z2 £ Vizy + 42 —y = 0.

Lemma 2.17. If (z,y) is a solution of the equation
2?2 = Viay+y*> —x =0, (2.16)

then the solutions of the same equation are the pairs (xz,Vix —y) and (Viy — = + 1, y).
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For example, if (0,0) is a solution of (2.16), then by Lemma 2.17, a sequence
of solutions of (2.16) is

(070)7 (170)7 (la‘/t)) (‘/;527‘/15)7 (‘/tQaV;f(‘/tz_ ))7
and these solutions can be rewritten as
U2 UyU, U2 UyU, U2 UUsy
0,00 = (% 5 1,0)= | =L, === 1.V = [ 2+
(7 ) (Utga UtQ)’ (a ) (Utgv Ut2 ) (7 t) Ut27 UtQ

U2 UU,
(VA V) = (Ui;, tUEt>""'

Theorem 2.18. For any integer n and even t, the pairs
(Uf(nﬂ)/Uf»Ut(n+1)Utn/Ut2) and (U2, /U, UinUyn 1)/ U7

satisfy the equation x2 — Vixy +y? —x = 0.

Proof. The proof is similar to the proof of Theorem 2.4. |

Theorem 2.19. If positive integers x and y satisfy the equation x> — Vixy +
y? —x = 0, then there exist positive integers c,e such that x = c?, y = ce and
ged (¢, e) = 1.

Proof. The proof can be done similar to the proof of Theorem 2.5. O
Again, we recall the another following auxiliary lemma from [7].

Lemma 2.20. If V2 — 4 is square-free, then for even t, the integer solutions

of (V2 —4) 2 + 4U? = y?U} are precisely the pairs (£Upy, +Vin) .

Theorem 2.21. For any integer n and even t, all solutions of the equation x> —

Vieyty?—z = 0 are (U2, 1) JUE, Usn1)Uin /UE ) and (U2, /U2, UinUsns1) [UE)
Proof. Using Theorem 2.19, x = ¢, y = ce such that ged (¢, e) = 1 satisfy the
equation 22 — Vyzy + y? — x = 0. Then we have
A—Vide+cte? - = 0,

& —Vice+er—1 = 0. (2.17)
The last equation has integer solutions if and only if A = (V2 —4)e? +4is a
square. Then there exists an integer f such that

=V —4)e* =4 (2.18)

From Lemma 2.20, the positive solutions of (2.18) are (e, f) = (Utn/Ut, Vin) -
From (2.17), we write

c= Vet f)/2,
and (¢, e) = (Ut(nﬂ)/Ut, Um/Ut). From Theorem 2.19, we get

(z,y) = (Ut2(n+1)/UtQ>Ut(n+1)Utn/Ut2) :
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Therefore (z,y) = (Uf(nﬂ)/Uf, Ut(nH)Utn/Uf) is a solution of the equation
(2.16). Similarly, from Lemma 2.17 and Theorem 2.18, the other claim is
obtained. There is no other solution than those shown in Theorem 2.11. O

One can similarly see that equation 22 — Vizy +y? —y = 0 has the solutions
(Ut(n+1)Utn/Ut27 U)?(n+1)/Ut2> and (Ut(n+1)Utn/U1527 Uth/Ut2)
We can summarize the results as:

’ Equation ‘ Solutions ‘

(Ut2(n+1)/Ut27 Ut(n+1)Utn/Uf)

22— Vizy+y* -2z =0
(Ut2n/Ut25 Ut(n+1)Ufn/Ut2)

2+ Vizy +y* —x =0 (Uf("fl)/UtQ’ _Ut("_l)Ut"/Ut2>
f —r=

(Uf(n—&-l)/UtQa _Ut(nJrl)Utn/UtQ)
(Ut(n+1)Utn/Ut2, Uf(n+1)/Ut2>

w2 = Viay +y* —y =0
(Ut(n+1)Utn/Ut27 Utzn/Utz)
(—Ut(nq)Um/Uf’ Uf(nq)/UtQ)

22+ Viay +y* —y =0

(_Ut(n—i—l)Utn/UtQa UtZ(n_H)/UtQ)

Table 3. The solutions of z*>+ Vizy+y*> —x =0 and 2> £ Vizy+y*> —y = 0.
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