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ABSTRACT. In the present paper, we compare the nilpotency class N (L)
of a nilpotent Lie algebra L with that of its proper subalgebras. As the
main result, we prove that N(L) < [nd/(d — 1)] where n = max{N(S) :
S is a proper subalgebra of L}, d is the minimal number of generators of

L and | ] denotes the integral part.
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1. INTRODUCTION

Nilpotent Lie algebras are very important in the classification theory of Lie
algebras, where they play a central role as a consequence of the Levi theorem
and the works of Malcev. The first significant research about nilpotent Lie
algebras is due to Umlauf in the 19th century. In the 40’s and 50’s, Morozov
and Dixmier began with the systematical study of this class of algebras (see
[1, 6] for more details). The structure of a nilpotent Lie algebra (group) with
regards to its subalgebras (subgroups) has been studied by some authors (see
[2, 4] for instance).

As the main theorem, we discuss a bound for the nilpotency class of a Lie
algebra with respect to the nilpotency class of its subalgebras. We actually
prove that if L is a nilpotent Lie algebra whose proper subalgebras are all
nilpotent of class at most n, then the class of L is at most |nd/(d — 1) ], where
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d is the minimal number of generators of L and | | denotes the integral part.
As a consequence, we show that the Heisenberg Lie algebra of dimension three
is the only finite dimensional non-abelian nilpotent Lie algebra whose proper
subalgebras are all abelian.

Throughout of this paper, all Lie algebras are over a fixed field A and L™
denotes the nth term of the lower central series of a Lie algebra L, defined
inductively by L' = L and L™ = [L"~!, L], for n > 2, where [,] denotes the Lie
bracket.

2. MAIN RESULTS

In this section, we discuss some preliminary known results and then prove
the main theorem.

Let L be a Lie algebra and H be a subalgebra of L. Then the idealizer of
H in L is defined to be

IL(H)={z € L|[x,y] € H,Vy € H}.

One can easily see that I (H) = L if and only if H is an ideal of L. The
following is an immediate result of the above definition.

Lemma 2.1. If L is a Lie algebra and H, K are two subalgebras of L, then
[H,K] < K if and only if H < I (K).

Lemma 2.2. Let L be a nilpotent Lie algebra and H be a proper subalgebra of
L. Then H # I,(H).

Proof. See [5], p. 14. O
The above results can easily imply the following proposition.

Proposition 2.3. Let L be a nilpotent Lie algebra and H be a maximal subal-
gebra of L. Then H is an ideal of L.

Now, we are ready to prove our main results.

Theorem 2.4. Let L be a nilpotent Lie algebra of class N(L). Then N(L) <
nd/(d — 1) where n = max{N(S) : S is a proper subalgebra of L}, d > 1 is
the minimal number of generators of L and | | denotes the integral part.

Proof. Let X = {x1,...,24} be a minimal set of generators of L and m =
|nd/(d—1)]. Tt is sufficient to show that [y1,y2, ..., ym+1] = 0, where every y; €
X. Let £ =|n/(d—1)]. Then m = n+{ and so m+1 < ({4 1)d, which implies
that not all elements of X can occur more than ¢ times in [y1,y2, ..., Ym+1]-
Therefore, there exists an element x; say, which appears at most £ times in
this Lie bracket. Since xs,xs,..., 24 do not generate L, there is a maximal
subalgebra H of L which contains x5, z3...,x4. By Proposition 2.3, H is an
ideal of L. Now [y1,¥2, ..., Ym+1] contains at least m +1 — £ = n + 1 elements
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of H. Now, it is sufficient to show that [y1,¥y2,...,Yms1] € H" !, since H is
nilpotent of class at most n. If [y1,ya, . . ., Ym-+1] contains at least one element of
H, then clearly [y1, Y2, .., Ym+1] € H. Assume that the result is true for every
positive integer less than n + 1. If y,, 41 € H, then [y1,y2,...,Ym] contains at
least n elements of H and hence it belongs to H™ and so [y1,¥y2, .-, Ym+1] €
H" Y If y,01 & H, then [y1,y2, ..., Ym] has already at least n+ 1 elements of
H. Now, if y,, € H, then [y1,y2,...,Yym—1] contains at least n elements of H
and by a similar manner [y1,y2,...,Ym—1] € H" and so [y1,¥2,- .., Ym+1] = 0.
If y,, ¢ H, then continuing this proceeding completes the proof. O

The following are immediate corollaries of Theorem 2.4.

Corollary 2.5. If L is a nilpotent Lie algebra whose proper subalgebras are all
nilpotent of class at most n and d(L) > n+ 1, then L has also nilpotency class
at most n.

Corollary 2.6. If L is a nilpotent Lie algebra of class 2n, whose proper sub-
algebras are all nilpotent of class at most n, then d(L) = 2.

It is easy to see that the Heisenberg Lie algebra and n-dimensional abelian
Lie algebra (n > 3), are Lie algebras satisfying Theorem 2.4. Recall that the
Heisenberg Lie algebra H(m) is the 2m + 1 dimensional real Lie algebra with
the basis {a1,...,am,b1,...,bm,c} and the Lie brackets defined by

las, ;] = [bi,b;] = [ai, ] = [bi, ] = [¢,c] =0 and [a;,b;] = cd;j,
where d;; is the Kronecker delta (see [3] for more details).

In the following result, we show that there is only one finite dimensional
non-abelian nilpotent Lie algebra whose proper subalgebras are all abelian.

Corollary 2.7. If L is an r-dimensional non-abelian nilpotent Lie algebra
whose proper subalgebras are all abelian, then r =3 and L = H(1).

Proof. By using Theorem 2.4, we have L%J =m. If d > 3, then L is abelian
which is a contradiction. Therefore, d = m = 2 and hence L? < Z(L). Also
if 1 < r < 2, then either L is abelian or L has a basis {z,y} say, in which
[z,y] = x. In the latter situation, the center of L is trivial (see [3], Theorem
3.1) and hence L is not nilpotent. Therefore, r > 3. Since d = 2, one can easily
check that dimL? =1 and also r = 3. Hence L = H(1) (see [3], p. 21). O
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