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ABSTRACT. In this paper, a new homological dimension of modules, co-
presented dimension, is defined. We study some basic properties of this
homological dimension. Some ring extensions are considered, too. For
instance, we prove that if S > R is a finite normalizing extension and
Sr is a projective module, then for each right S-module Mg, the cop-
resented dimension of Mg does not exceed the copresented dimension of

Hompg(S, M).
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1. INTRODUCTION

Throughout this paper, R is an associative ring with identity and all modules
are unitary. First we recall some known notions and facts needed in the sequel.

Let R be a ring, n a non-negative integer and M an R-module. Then

(1) M is said to be finitely cogenerated [1] if for every family {Vi}s of
submodules of M with (,Vj = 0, there is a finite subset I C J with

N, Vi = 0.

(2) M is said to be n-copresented [14] if there is an exact sequence of R-
modules 0 — M — E° — E* — ... — E™ | where each E' is a finitely

cogenerated injective module.
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R is called right co-coherent [17] if every finitely cogenerated factor
module of a finitely cogenerated injective R-module is finitely copre-
sented.

R is called n-cocoherent [14] in case every n-copresented R-module is
(n + 1)-copresented. It is easy to see that R is cocoherent if and only
if it is 1-cocoherent. Recall that a ring R is called right conoethrian
[4] if every factor module of a finitely cogenerated R-module is finitely
cogenerated. By [4, Proposition 17], a ring R is co-noethrian if and
only if it is O-cocoherent.

M is said to be n-presented [5] if there is an exact sequence of R-
modules F,, > F,,_1 — -+ = F;, - Fy — M — 0, where each F; is a
finitely generated free module.

R is called coherent [18] in case every O-presented R-module is 1-
presented.

A ring extension R C R’ with characteristic p > 0 is called a purely
inseparable extension [10] if for every element r e R/, there exists a

non-negative integer n such that 7" eR.

For any commutative ring R of prime characteristic p > 0, assume that
Fr : R — R is the e-th iterated Frobenius map in which R(®) = R.
Then, the perfect closure [9] of R, denoted by R, is defined as the
limit of the following direct system:

Fr Fr Fr

R R R

M is called (n, d)-injective [18] if Ext%LM (N, M) = 0 for any n-presented
right R-module N. It is clear that M is (0,0)-injective if and only if
M is injective.

Assume that S > R is a unitary ring extension. Then, the ring S is
called right R-projective [6] in case, for any right S-module Mg with
an S-module Ng, Ng | Mg implies Ng | Mg, where N | M means that
N is a direct summand of M.

The ring extension S > R is called a finite normalizing extension [8] in
case there is a finite subset {s1, -+ ,s,} C S such that S = Ezjf siR
and s;,R = Rs; fori=1,--- ,n.

A finite normalizing extension S > R is called an almost excellent
extension [12] in case gS is flat, Sk is projective, and the ring S is
right R-projective.

In this paper, we introduce the dual concepts of presented dimensions of

R-modules. We also, introduce the copresented dimension of any R-module
M:

FEd(M) = inf{m | there exists an injective resolution 0 — M — E° —
o3 E™ ... 5 E™t ... such that E™* are finitely cogenerated for
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i=0,1,2,---}. If K = ker(E™ — E™*!), then K has an infinite finite cop-
resentation. It is clear that any copresented dimension is finitely copresented
dimension (see [16]). Also, the copresented dimension of ring R is defined to
be:

FED(R) = sup{FEd(M) | M is a finitely cogenerated module}.

Then, some basic properties of the copresented dimensions of modules are stud-
ied. For example, it is shown that if FEd(M) < oo, then id(M) < n if and only
if Ext;?'l(N ,M) = 0 for every strongly copresented R-module N. Also, it is
proved that FED(R® S) = sup{FED(R), FED(S)}, for any two rings R and S.
Also, some characterizations of the copresented dimensions of modules on Ring
Extensions are determined. For instance, let S > R be a finite normalizing ex-
tension with Sk projective as an R-module, then for any right R-module Mg,
we have FEd(Hompg(S, M))s < FEd(Mg). Finally, we give a sufficient condi-
tion under which FED(S) < FED(R) and or FED(R) < FED(S) + max{k, d},
where k = id(Sg) and d = sup{FEd(Mg) | M € Mod — S and FEd(Ms) = 0}.

2. MAIN RESULTS

We start this section with the following definition which is the dual of the
presented dimension of a module.

Definition 2.1. For any R-module M, we define the copresented dimension
of M to be FEd(M) = inf{m | there exists an injective resolution 0 — M —

E°— ... 5 E™ ... 5 Emtt 5 ... 5o that E™1? are finitely cogenerated for

i=0,1,2,--- }. In particular, a module M is called strongly copresented mod-
ule if FEd(M) = 0.

Proposition 2.2. For any R-module M, FEA(M) <id(M) + 1.
Proof. 1t is a direct consequence of Definition 2.1. O

EXAMPLE 2.3. Let R = Z. Since id(Zp~) = 0, we have FEd(Zy~) < 1. On
the other hand, Z,~ is finitely cogenerated by [1, p.124]. So by Definition 2.1,
FEA(Zy) = 0.

Now, we study the behavior of the copresented dimension on the exact se-
quences. Before this we need the following lemma.

IR

’

Lemma 2.4. Let 0 — A L B
modules. Then:

(1) If0 - A — A" - A - ... and 0 - C — C° — Ct — --- are
injective resolutions of A and C, respectively. Then the exact sequence

C — 0 be a short exact sequence of R-

0—B-—A"¢C’ —s AlpC! — ---

is an injective resolution of B.
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(2) If0 - B —- BB - ... and0 - C = C° - C' — --- are
injective resolutions of B and C, respectively. Then the exact sequence

0—A—B"—D"— D' — ...

is an injective resolution of A, where D' = C* @ Bt for any i > 0.
(3) If0 - B —- BB - ... and0 - A — A — Al — ... are
ingective resolutions of B and A, respectively. Then the exact sequence

0—C—F —E —E' —...

is an injective resolution of C, where F° = B @ A! and E' = A° @
Bl @ A2 for any i > 0.

Proof. (1) The proof is similar to that of [3, Theorem 2.4].

(2) Let 0 -+ B — BY — B! — --- be an injective resolution of B. Then,
the exact sequences

0K —-B'—-B?2—... and 0— B — B - K — 0 exist, where
K= %]. Now, we consider the following commutative diagram:

0
l

0O — A — B — — 0
[ !

0 — A — B° — 0

S+ R+ Qg+ QO+« o

o+ =X+

By (1), there is an exact sequence
0—D-—D"—D'"—D*—...

of injective R-modules D! such that D' = C* @ B**! for any i > 0.
Combining this sequence with the exact sequence 0 - A — B = D — 0,
we get the exact sequence

0—A—B"—D"—D — ...

where B? and D? are injective for any i > 0.

(3) Let 0 - A — A — A! — ... be an injective resolution of A. Then, the
exact sequences

0> K = A' - 42 5 ... and 0—= A — A" 5 K — 0 exist, where
K = Ajf). Now, we consider the following commutative diagram:
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0 0
4 i
0O — A — B — C — 0
' ' [
0 — A — F — C — 0
4 4
K = K
{ {
0 0

By (1), there is an exact sequence
0—F—F' —SF' - F> ..

of injective R-modules F? such that F* = B* ® A**! for any i > 0.
It is clear that FF = A% ® C. So, the exact sequence 0 = C — F — A° = 0
exists. Let K = %0, then we obtain the following commutative diagram:

0
I

0O — C — F

| ¢

0 — C — FO

1

l

l

o+ N+ e B+ o
L
o

|

K

J

0
Therefore by (1), the sequence

0—E—FE"—FE —E>— ..

is an injective resolution of E, where E* = AY @ Fitl = A° ¢ B+ ¢ A2 for
any i > 0. Combining this sequence with the exact sequence 0 — C — F° —
E — 0, we get the exact sequence

0—C—F"—E—E'"— ...
where F° and E* are injective for any i > 0. O

f

Theorem 2.5. Let 0 — A% B L ¢ = 0 be an exact sequence of R-modules.
Then FEd(B) < max{FEd(A),FEd(C)},FEd(C) < max{FEd(B),FEd(A) +
1}, FEd(4) < max{FEd(B),FEd(C) — 1}.

Proof. Assume that E is an injective resolution of A and E’ is an injective
resolution of C. Thus by Lemma 2.5(1), there exists an injective resolution E
of B such that

0-EASEB=E20EC-5EC -0
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is an exact sequence of complexes. Hence for every m > max{FEd(A), FEd(C)},
E™ is finitely cogenerated. So, we deduce that FEd(B) < max{FEd(A),FEd(C)}.
Assume that E” is an injective resolution of C' and E is an injective resolution
of B. Thus by Lemma 2.5(2), the exact sequence
0—A—E —D° Dt —...— DI ...

is an injective resolution of A. So for every d > max{FEd(B), FEd(C) -1}, D4
is finitely cogenerated. Thus, we have that FEd(A) < max{FEd(B),FEd(C) —
1}. Also, it is prove that FEd(C) < max{FEd(B),FEd(4) + 1}. O

The proof of the following Corollary is similar to the proof of [19, Corollary
2.7].

Corollary 2.6. If FEd(M,),FEd(Ms),---FEA(My) are finite, then:
FEd(®M;) = max{FEd(M;) |i=1,--- ,d}.
Proof. For the case m = 2, the exact sequences
0— M — M, &My — My —0
and
0— My — My My — M —0
exist. Thus by Theorem 2.5, we deduce that
FEd(Ms3) < max{FEd(M; & M), FEd(M;) — 1},
FEd(M;) < max{FEd(M; & M), FEd(M3) — 1}

and
FEd(M; @ Ms) < max{FEd(M,), FEd(M>)}.

Assume that FEd(M;) < FEd(Mz). Then FEd(M;) < FEd(Mz) — 1, and we
have:
FEd(M>) < max{FEd(M; ® M), FEd(M>) — 2} = FEd(M; & Ma).

Also, similarly FEA(M;) < FEd(M; & Ms). So, we conclude that FEd(M; &
M) = max{FEd(M,), FEd(Mz)}. O

Proposition 2.7. Let n be a non-negative integer. Then the following state-
ments are equivalent:

(1) id(M) < n for every strongly copresented R-module M ;

(2) Extl™ (N, M) = 0 for every strongly copresented R-module N.

Proof. (1) = (2) This is obvious.

(2) = (1) We use the induction on n. Let n = 0. Since Extx(N, M) = 0 for
any strongly copresented R-module N, by using the exact sequence 0 — M —
E° — L% — 0 where E° is finitely cogenerated and L° is strongly copresented,
we deduce that Exty(L°, M) = 0. Therefore by [7, Theorem 7.31], the exact
sequence ebove is split. So, M is injective and hence id(M) < 0. Assume that
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n > 0. By [7, Corollary 6.42], we have that Ext’;™' (N, M) = Ext’y(N, L°) =
0. Thus by induction hypothesis, id(L%) < n — 1. Therefore from the exact
sequence ebove, we deduce that id(M) < n. O

Proposition 2.8. Let FEA(M) < 1. Then the following statements are equiv-
alent:

(1) id(M) <n;

(2) Extl;™ (N, M) = 0 for every strongly copresented R-module N.

Proof. Since FEA(M) < 1, the exact sequence 0 — M — E° — L0 — 0 exists,
where E° is injective and L is strongly copresented. Thus, Ext}’;l(]\f ,M)=0
for any strongly copresented R-module N if and only if Ext (N, LY) = 0 if and
only if id(L") < n — 1 (by Proposition 2.7) if and only if id(M) < n. O
Theorem 2.9. Let FEA(M) < oo. Then the following statements are equiva-
lent:

(1) id(M) < n;

(2) Extl™ (N, M) =0 for every strongly copresented R-module N.

Proof. (1) = (2) It is clear.
(2) = (1) If FEd(M) = m, then the exact sequence

m—1 .
0 Mo E 5B - .. pnt 4 pmd g

exists, where E? is finitely cogenerated for any i > m. By Proposition 2.2,
n+1>m. Let Ext?jl(N , M) = 0 for every strongly copresented R-module
N. Thus by [7, Corollary 6.42], we have

Ext)H (N, M) = Extl ™ (N, cokerd™ 1) = 0.
Since cokerd™ ™! is strongly copresented, Proposition 2.8 impleis that
id(cokerd™ ') <n —m
and so, we deduce that id(M) < n. O
Corollary 2.10. Let D(R) < co. Then:
D(R) = sup{pd(NV) | N is strongly copresented}.

Proof. Assume that D(R) < m. Thus, pd(N') < m for any R-module N’
So, for any strongly copresented R-module N, pd(N) < m. Conversely, let
pd(N) < m for every strongly copresented R-module N. Thus Ext}g"’l (N, M) =
0 for every strongly presented R-module M. Since D(R) < oo, FEA(M) < oo
by Proposition 2.2. Therefore by Theorem 2.9, id(M) < m and hence by [19,
corollary 3.7], D(R) < m. O

Definition 2.11. For any ring R, we define the copresented dimension of R
to be FED(R) = sup{FEd(M) | M is a finitely cogenerated module}.
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EXAMPLE 2.12. Let R = k[23, 2%y, 7y3,9?], where k is a field with character-
istic p = 3. By Definition 2.11 and Proposition 2.2, FED(R>) < D(R*) + 1,
where R™ is perfect closure of R. On the other hand, k[z,y] is purely insep-
arable over R. Also, by [9, Proposition 3.3], (k[x,y])* is coherent. Therefore
by [10, Remark 1.4], R* is coherent. Since R is reduced, [2, Proposition 5.5]
implies that FED(R*°) < dim(R) + 1 and so, FED(R>) < 3.

Proposition 2.13. The following statements are equivalent:
(1) FED(R) =0;
(2) Ewery finitely cogenerated module has an infinite finite copresented;
(3) Every finitely cogenerated module is finitely copresented;
(4) R is co-noetherian.

Proof. The implication (1) = (2) = (3) follow immediately from Definiton
2.11.
(3) = (4) = (1) are trivial. O

Corollary 2.14. If FED(R) < 0, then R is n-cocoherent.

Proof. Since every n-copresented module M is finitely cogenerated, Proposition
2.13 implies that M is (n + 1)-copresented. O

Next, we study the copresented dimension of the direct sum of rings. But
before this we need the following lemma.

Lemma 2.15. Let f : R — S be a ring epimorphism. If Mg is a right S-
module (hence a right R-module) and Ny, is a right R-module, then the following
statements hold:
(1) M &g S = Ms.
(2) If f is flat and Ng is a finitely cogenerated right R-module, then N®gS
is a finitely cogenerated right S-module.
(3) If f is flat , then Mg is a finitely cogenerated right S-module if and
only if Mg is a finitely cogenerated right R-module.
(4) If f is projective, then Mg is an injective right S-module if and only if
Mg is an injective right R-module.

Proof. (1) This is clear.

(2) For any family of submodules {N; ®g 1g|i € I} in N ®r S, if (N; @r
15) = 0, then we need to show that (. z(N; ®r 1s) = 0 for some finite subset
F of I. Since f is flat, we have that (,.; N; ®r 1s = 0. So, [),c;Ni = 0
and hence by hypotises (). N; = 0 for some finite subset F of I. Therefore,
ﬂieF(Ni ®rls) = ﬂieF Ni ®r 1s = 0.

(3) (=): Let ¥ : M — [[;c; R is a monomorphism, then we claim that
7 : M — [[,cp R is a monomorphism for some finite subset F' of I. We have

the following commutative diagram:
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MY LR
= lg
h

M — LS

where since g is epimorphism and % is monomorphism, A is monomorphism.
So by hypothesis, a : M — [],. S is a monomorphism for some finite subset
F of I. Therefore the following commutative diagram:

M L LR

= 1B
M = TLerS

where § is epimorphism and « is monomorphism, implies that v is monomor-
phism.

(<) : This follows from (1) and (2)

(4) By [5, Lemma 3.3], Mg is an (n, d)-injective right S-module if and only if
Mp, is an (n, d)-injective right R-module. If n = 0,d = 0, Then (4) is hold. O

Theorem 2.16. Assume thet R and S are two rings. Then:
FED(R & S) = sup{FED(R), FED(S)}.
Proof. We first show that FED(R @ S) < sup{FED(R),FED(S)}. Consider

FED(R) = n,FED(S) = m and n > m. Also, let M be a finitely cogenerated
right (R® S)-module. Then M has a unique decomposition M = A@® B, where
A, B are right modules of rings R and S, respectively. By [15, Lemma 1.1],
A and B are finitely cogenerated right (R @ S)-module. So by Lemma 2.15,
A is finitely cogenerated right R-module and B is finitely cogenerated right
S-module. Therefore FEd(A) < n and FEd(B) < m, and hence there is an

exact sequences
0+A—-E -FE ... o FE"' S E" ...
0=B—E —-E - > E"'" S E"> ...

of injective right R-modules E?! and injective right S-modules Ej such that

E!, E} are finitely cogenerated for any i > n and ¢ > m, respectively. So, we
deduce that the exact sequence

05 AGB—>E'@E) »E'¢E - > E' '@E" 'S E'GE" — -

exists, where by Lemma 2.15, every E! & Ej is injective right (R & S)-module
and also, every E! @ E! is finitely cogenerated for any i > n. Therefore, we
have FED(R @ S) < sup{FED(R),FED(S)}.

Conversely, Assume that FED(R® S) = d. If M is a finitely cogenerated
right R-module. Then by Lemma 2.15, M is a finitely cogenerated right (R®S)-
module and hence FED(M(ggs)) < d. Thus, the exact sequence 0 — M —
E° - E' - ... = Ei=1 — B4 5 ... of injective right (R @ S)-modules
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E' exists, where every E° is finitely cogenerated for any i > d. Let E' =
C* @ D, where C* is a R-module and D? is a S-module. On the other hand,
M is a right R-module, so we have the exact sequence 0 — M — C° —
Cl' - ... - C¥1 -5 04 - ... of R-modules. But, every C is injective
right (R @ S)-module and also every C? is finitely cogenerated right (R & S)-
module for i > d. So by [15, Lemma 1.1] and Lemma 2.15, C* is an injective
right R-module and it is finitely cogenerated R-module for i > d. Therefore
FEd(M) < d and hence FED(R) < d. Similarly, FED(S) < d and implies that
sup{FED(R), FED(S)} < FED(R & S). O

Proposition 2.17. Let S > R be a finite normalizing extension with Sg projec-
tive as an R-module. Then for any right R-module Mg, FEd(Hompg(S, M))s <
FEd(Mp).

Proof. Asume that FEd(Mg) = n. Then there axists an exact sequence of
injective R-modules

0+M—-E"-E'"—... 5 B 5 E" ...

where each E' is finitely cogenerated for any i > n. Since S is projective, there
is an exact sequence

0 — Homp(S, M) — Homp(S, E) — --- — Homg(S, E™) — - -

of injective S-modules Hompg(S, E*), where by [13, Propositon 8.3], Homg(S, E?)
is finitely cogenerated for any ¢ > n. Thus FEd(Homg(S, M))s < n and hence,
we have FEd(Hompg(S, M))s < FEd(MR). O

Proposition 2.18. Let S > R be a finite normalizing extension, Sg be Pro-
jective, and S be R-projective. Then for each right S-module Mg, FEd(Mg) <
FEd(Hompg/(S, M)).

Proof. By [12, Lemma 1.1], Mg is isomorphic to a direct summand of Hompg (S, M).
So, from Corollary 2.6, we deduce that FEd(Mg) < FEd(Homg(S, M)). O

Proposition 2.19. Let S > R be an almost excellent extension. Then for each
right S-module Mg, FEA(Mp) < FEd(Ms).

Proof. Asume that FEd(Mg) = n. So, there axists an exact sequence of injec-
tive S-modules

0>M-—-E">sFE' ... 5 FE" v S E" ...,

where each E' is finitely cogenerated for any i > n. Thus by [18, Proposition
5.1], every E' is an injective R-module and also, it is a finitely cogenerated
R-module for i > n by [14, Theorem 5]. Therefore, it follows that FEd(Mp) <
FEd(Mg). O

Corollary 2.20. Let S > R be an almost excellent extension. Then for each
right S-module Mg, FEA(Mp) = FEd(Mg) = FEd(Hompg(S, M)).
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Theorem 2.21. Asume that S > R is a finite normalizing extension and Sp
is Projective. Then:
(1) If S is R-projective and FED(S) < oo, then FED(S) < FED(R).
(2) If FED(R) < oo, then FED(R) < FED(S) + max{k,d}, where k =
1d(Sg) and d = sup{FEd(MRr) | M € Mod — S and FEd(Mg) = 0}.

Proof. (1) Asume that FED(S) = n and FEd(Mg) = n for a finitely cogener-
ated S-module M. Since Sg is projective, by hypothesis and [12, Lemma 1.1],
Mg is isomorphic to a direct summand of Homp(.S, M) and hence we have:

0 — K — Hompg(S,M)) - Mg — 0.

By [14, Lemma 4], Hompg(.S, M)) is finitely cogenerated S-module, since My, is
a finitely cogenerated R-module. So, FEd(Hompg(S, M)s) < n. On the other
hand, by Theorem 2.5,

FEd(K) < max{n,n — 1},
n = FEd(Ms) < max{FEd(Hompg(S, M)s),FEd(Ks) — 1} < FED(S) = n.
Therefore FEd(Hompg (S, M)g) = n. Thus, Proposition 2.17 implies that
FEd(Homp(S, M)s) < FEd(Mpg)

and hence FED(S) < FED(R).

(2) Asume that FED(R) = n and FEd(Mg) = n for a finitely cogenerated
R-module M. Since Sg is projective, by [12, Lemma 1.1], Mg is isomorphic
to a direct summand of Hompg(S, M) which induces the following short exact
sequence of R-modules:

00— K — HomR(SR,M)) — Mpr — 0.

It is clear that Hompg(Sg, M)) is a finitely cogenerated R-module. Thus The-
orem 2.5 implies that

n = FEd(Mg) < max{FEd(Hompg(Sgr, M)),FEd(Kr) — 1} < FED(R) = n,
and hence FEd(Hompg(Sg, M)) = n.
If FEd(Hompg(S, M))s = m < FED(S), then there is an injective resolution
0 — Homp(S, M) o, go Sy g gt S g Fet

of Hompg(S, M), where every E’ is a finitely cogenerated S-module for any
i > m. Let D' = coker(f;) for every i > 0. Thus, the following short exact
sequences

0 — Homg(S, M) — E° — D° — 0,

0— D" 2 s Eml 4 pm-l 40,

0— D"l S E™ D™ 0
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exists, where FEd(D™~1) = 0. But by hypothesis and Proposition 2.2, we
have:

FEd(D))r <id(D')g +1<id(Sg)+1=k+1 , FEAD™ ") <d.

Therefore by Theorem 2.5, we deduce that:
FEd(D™%)g < max{FEd(E™ )i, FEd(D™ 1) g + 1} < max{k + 1,d +
1} =1 + max{k,d},

FEA(D™?)g < max{FEd(E™ %)z, FEA(D™ ?)g + 1} < 2 + max{k,d},

FEd(D%)r < max{FEd(E")g, FEA(D')g + 1} < m — 1 + max{k, d},
n = FEd(Hompg(S, M))r < max{FEd(E°)g, FEA(D°) g+ 1} < m+max{k,d}.
Thus FED(R) < m + max{k,d} < FED(S) + max{k, d} and so, the proof is
complete. [

Corollary 2.22. Let S > R be an almost excellent extension. Then FED(R) <
FED(S) +1d(S)r.

Proof. By Proposition 2.19 and Theorem 2.21, this is clear. (I
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