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ABSTRACT. Let D be the diameter and dg(v;,vj) be the distance be-
tween the vertices v; and v; of a connected graph G. The complementary
distance matrix of a graph G is CD(G) = [cd;;] in which ed;j =1+ D —
da(vi,v5) if i # j and ed;j = 0if ¢ = j. The complementary transmission
CTg(v) of a vertex v is defined as CTg(v) = 3, cv(g)[l +D —da(u, v)].
Let CT(G) = diag|CTg(v1),CTg(v2),...,CTg(vn)]. The complemen-
tary distance signless Laplacian matrix of G is CDL1(G) = CT(G) +
CD(QG). In this paper, we obtain the bounds for the largest eigenvalue of
CDL*(G). Further we determine Nordhaus-Gaddum type results for the
largest eigenvalue. We also establish some bounds for the complementary

distance signless Laplacian energy.
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1. INTRODUCTION

In this work we concern only simple graphs, that is graphs without loops,
multiple and directed edges. Let G be such a graph with vertex set V(G) =
{v1,v2,...,v,} and edge set E(G), where |V(G)| = n and |E(G)| = m. Let
A = A(G) be its (0,1)-adjacency matrix. Suppose N; be the neighbor set of
vertex v; € V(G). Then |N;| = dg(v;), where dg(v;) is the degree of a vertex
v;, for i =1,2,...,n. The maximum and minimum vertex degrees are denoted
by A and ¢, respectively. The distance between two vertices u and v, which
is the smallest length of any w — v path in G, is denoted by dg(u,v). The
greatest distance between any two vertices of a connected graph G is called the
diameter of G and is denoted by diam(G) = D.

For developing structure property models in drug design, virtual synthe-
sis, chemical database searching, similarity and diversity assessments, there is
a significant interest in deriving additional structural descriptors for quantita-
tive structure property relationship (QSPR) and quantitative structure activity
relationship (QSAR) models. So that Ivanciuc [26] introduced the complemen-
tary distance matrix for molecular graphs, and discussed by Balaban et al. [4]
and Ivanciuc et al. [27], which has been successfully applied in the structure
property modeling of the molar heat capacity, standard Gibbs energy of for-
mation and vaporization enthalpy of 134 alkanes Cg — C1g [27].

The complementary distance matrix of a graph G is defined as CD(G) =
[cdi;], where

1+D—d;; if i#j
Cdij =
0 otherwise,

where D is the diameter of G and d;; is the distance between the vertices v;
and v; in G. The complementary Wiener index of a graph G is defined as

1 n n
CW(G) = §ZZ(I+D—dij) = Y (1+D—dy). (1.1)
i=1j=1 1<i<j<n
We define the complementary transmission CTg(v) of a vertex v as CTg(v) =
>ueveyll + D —dg(u,v)] and CT(G) is the diagonal matrix
diag[CTg(v1), CTg(va), ..., CTa(vy)].

For 1 < ¢ < n, one can easily see that CTg(v;) is just the i-th row sum
of CD(G). Clearly CW(G) = %ZUGV(G) CTe(v). A graph G is said to be
complementary transmission regular if CT¢(v) is a constant for each v € V/(G).
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Since A is a real and symmetric adjacency matrix of order n, its eigenvalues
A1, A2, ..., A\, are real numbers. These eigenvalues form the spectrum of G
[9, 12]. The energy of a graph G is defined as the sum of absolute values of its
eigenvalues [22], that is,

Ea=Ea(G) =) |\l
i=1

The mathematical properties of this spectrum-based graph invariant has
been extensively studied, see the book [30], the recent articles [16, 17, 18, 19,
21, 23, 34, 33] and the references cited therein.

The complementary distance energy of a graph G, denoted by Ecp(G) and
is defined as,

n
Ecp(G) = |uil, (1.2)
i=1
where py, po, . .., 4y are the eigenvalues of the complementary distance matrix

CD(G) of G. B. Zhou, and N. Trinajsti¢ [37], gave bounds for the largest
eigenvalues of the complementary distance matrix. Recent results related to
the complementary distance energy can be found in [31, 32, 35].

The eigenvalues of the complementary distance matrix of a graph G satisfies
the relations

Zpi:() and Zuf:Q Z (1+D —d;)°. (1.3)
i=1 i=1 1<i<j<n
Let Deg(G) = diagldg(vi),dg(va), ..., dg(vy,)] be the diagonal degree ma-
trix of G. The Laplacian matrix of G is defined as L(G) = Deg(G) — A(G)
and signless Laplacian matrix of G is defined as L™ (G) = Deg(G) + A(G). Let
WL sty -y and pi, g, .. b be the eigenvalues of the matrices L(G) and
LT (@), respectively. Then the Laplacian energy of G is defined in [24] as,

_ 2m

My — =

EL(G) = -

and, in analogy to E'(G), the signless Laplacian energy is defined as

2m
E7(G) = |uf — o

For studies of the signless Laplacian spectrum and energy see [1, 3, 11, 13,
14, 15, 16, 17, 29, 36].

The complementary distance Laplacian matrix of a connected graph G is
defined as
CDL™ (G) = CT(G) — CD(QG).
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The complementary distance Laplacian energy of a graph G is denoted by
Ecpr-(G) and is defined as

n n

1
E - = ;= — ; .
epr-(G) = |0 = > CTalv;)|, (1.4)
=1 j=1
where 41, ds,...,0, are the eigenvalues of the complementary distance Lapla-

clan matrix of G.

The complementary distance signless Laplacian matrix of a connected graph
G is an n x n matrix CDLT(G) = [¢;;], where

14+ D —dy it i
S (LD —dy) i Q=3

where d;; is the distance between the vertices v; and v;.
In other words, complementary distance signless Laplacian matrix is

Cij =

CDL*(G) = CT(G) + CD(G). (1.5)

The investigation of matrices related to various graphical structures is a very
large and growing area of research. The matrix CDL™ (G) is irreducible, non-
negative, symmetric and positive semidefinite. Let p; = p;(G), i = 1,2,...,n
be the eigenvalues of the complementary distance signless Laplacain matrix
CDL™(G) and they can be labeled in the non-increasing order as p; > ps >

- > pp. The largest eigenvalue p; of CDLT(G) is called the complemen-
tary distance signless Laplacian spectral radius of G. By the Perron-Frobenius
theorem, there is a unique normalized positive eigenvector of C DL*(G) corre-
sponding to p1(G), which is called the (complementary distance signless Lapla-
cian) principal eigenvector of G.

A column vector x = (z1,Z2,...,7,)T € R" can be considered as a function
defined on V(G) which maps vertex v; to x;, that is, z(v;) = x; for i =
1,2,...,n. Then,

+'CDLT (G)x = Z (14 D — dyy)(z(u) + z(v))?,
{u,v}CV(G)

and p is an eigenvalue of C DL (G) corresponding to the eigenvector z if and
only if « # 0 and for each v € V(G),

pr(v) = Y (14D —du)(@(u) +z(v)).

ueV(G)

These equations are called the (p, z)-eigenequations of G. For a normal-
ized column vector x € R™ with at least one non-negative component, by the
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Rayleigh’s principle, we have
p(G) > 2z CDL*(G),

with equality if and only if x is the principal eigenvector of G (see [10]). For
other undefined notations and terminology from graph theory, one can refer
the books [5, 7, §].

The paper is organized as follows. In Sections 2 and 3 we determine the
bounds and Nordhaus-Gaddum type results for p;(G). In Section 4, we de-
termine the upper bounds for p;(G) of bipartite graphs. In Section 5, we
get the eigenvalues of the complementary distance signless Laplacian matrix
of graphs obtained by some graph operations. Finally, in the Section 6, we
obtain the bounds for the complementary distance signless Laplacian energy
of graphs. The results of this paper are analogous to the results obtained in [2].

2. BOUNDS FOR p;1(G)

In this section, we get upper and lower bounds for the maximum eigenvalue
of the complementary distance signless Laplacian matrix of a graph G. We
start with the following lemma.

Lemma 2.1. Let G be a connected graph on n vertices. Then

4CW (G
pi(c) > 2E)
n
with equality if and only if G is complementary transmission regular.
Proof. Since 1 = ﬁ(l, 1,...,1)T € R" is normalized, we have
m(G) > 1TCDLT(G)1
2
1 1
= > (1+D-dy) <+)
1<i<j<n \/ﬁ \/ﬁ
_ACW(G)
- —

Equality holds if and only if the graph G has the principal eigenvector 1,
that is, CTg(v) is a constant for each vertex v € V(G), i.e., G is complementary
transmission regular.

O

Corollary 2.2. Let G be a connected graph with n > 2 vertices, m edges and
D = diam(G). Then

p1(@) = D~ 1) + 20— 1), (2.1)

Equality holds if and only if G is a regular graph of diameter D < 2.
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Proof. Suppose G = K, or G is a regular graph of diameter D = 2, then it
is easy to see that (2.1) is an equality. Conversely, since there are m pairs of
vertices at distance 1 and [(g) — m] pairs of vertices at distance at most D,
we have,

CW(G) > Dm + [(Z) —m} —(D—1)m+ w

Therefore by Lemma 2.1, we get the required result. O

Corollary 2.3. Let G be a triangle and quadrangle free connected graph with
n > 2 vertices, m edges and diameter D. Then

p1(G)>2|n—1+ % (D —2)Mi(G) +2m]| ,

where Mi(G) = 3 cv () [da(u)]?.
FEquality holds if and only if G is a complementary transmission reqular and
D < 3.

Proof. Here m pairs of vertices are at distance 1, [%Ml(G) - m] pairs of ver-
tices are at distance 2 and [(g) — %Ml(G)] pairs of vertices are at distance at
most D > 3, then from Lemma 2.1 we have the following

n(n —1) —lMl(G)

p1(G) 9 9

v

% [Dm +(D-1) [;Ml(G) - m} +

2 [n -1+ % [(D—2)M1(G) +2m]] .

O

Lemma 2.4. [6] Let B be a non-negative irreducible matriz with row sums
B1,Bs,...,By. If p1(B) is the largest eigenvalue of B, then mini<;<nB; <
p1(B) < mazi<i<nB;, with either equality if and only if By = Ba = --- = B,,.

Lemma 2.5. Let G be a connected graph with n > 2 vertices and diameter D.
Let A and § be the maximum and minimum vertex degrees of G respectively.
Then

2ln—1+(D-1)0 < p1(G) <2[(n—1)(D —1) + A],

with equality on both sides if and only if G is a regular graph of diameter D < 2.
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Proof. We can easily see that the sum of the elements of i-th row in a matrix
CDL*(G) is

CDL:'_ == Zcij

= 2 Xn: (1+ D — dy;)
J=1, j#i
< 21+ D—1)dg(:)+ (1+D—2)(n—1—dg(v;))]

n—1)(D — 1)+ dg(vi)]

and

C’.DL?r = i Cij
j=1

= 2 En: (1+ D — d;j)

J=1, j#i
> 2[(1+D-1)dg(vi)+(1+D—=D)(n—1—dg(v;))]
= 2ln—1+4+ (D —1dg(v;)].

Equality holds in both cases if and only if D < 2 for all 4. Clearly C’DLT =
CDL = --- = CDL; if and only if dg(v1) = dg(va) = --- = dg(v,) and
D < 2. By Lemma 2.4, the maximum eigenvalue of an irreducible non-negative
matrix is at most the maximum row sum of the matrix and is at least the
minimum row sum of the matrix, which is attained if and only if all the row
sums are equal. Further 6 < dg(v;) < Aforalli=1,2,... n. Hence the result

follows from Lemma 2.4.
O

We obtain another upper bound for p; (G) in terms of order, size and maximum
vertex degree, which is as follows.

Theorem 2.6. Let G be a connected graph with n > 2 wvertices, m edges and
A is the mazimum vertex degree. Then

p1(G) < v/In—1][4(n — 1)(D — 1)2] + 22D — 1]2m + (n — 2)A],  (2.2)
with equality if and only if G = K,,.

Proof. Let X = (z1,22,...,7,)T be an unit eigenvector corresponding to p; (G)
of CDL™(G). We have

CDLY(G)X = ;i (G)X.

From the i*" equation of the above expression and applying the Cauchy-Schwarz
inequality, we have
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o (Gx; = Z (1+ D —dir)(zk + )
k:k#i
< D (4D =dn)? ) (wk + @) (2.3)
kiksi ki

Let CTF = Zk:k#(l—l—D—dik)Q, fori=1,2,...,nand CT, = mar;cvyCT}.
Squaring both sides in (2.3) and taking sum for i = 1 to n, we get

p(G) < ZC’T;‘ (1 —zi 4+ (n—D2?+1—a7 +(n— 1)3:12) (2.4)

i=1

= En: CT; (24 (2n —4)23)

i=1

n n
< 2) CT; +(2n - 4)CT; as Y a7 =1 (2.5)
i=1 =1
Since,
CT; = Y (1+D—dy)’
k:k#i

< (n—=1)(D—1)*+ (2D — 1)dg(v;)

and also, CT; = (D —1)?(n — 1) + (2D — 1)A, that is, Y1 | CT; = n(n —
1)(D —1)2 4+ 2m(2D — 1). Therefore we get

P3(G) < [n—1][4(n —1)(D — 1)’ +2[2D — 1][2m + (n — 2)A]. (2.6)

For the equality, suppose that equality holds in (2.2). Then all inequalities in
the above argument must be equalities. From equality in (2.6), G has D < 2
and CT} = (D—1)2(n—1)+ (2D — 1)dg(v;), for i = 1,2,...,n. From equality
n (2.4), G is a regular graph because we get CTy = CTy = --- = CT}.
Then dg(v1) = dg(ve) = -+ = dg(v,). If D =1, then G & K,,. Otherwise
D = 2 and hence we have d;; = 1 or d;; = 2, for all 4,5. Without loss of
generality we can assume that the shortest distance between vertex v; and
v, is 2. From equality in (2.3) and (2.4), we get d; 121 = dioz0 = -+ =
di’iflfﬂifl = di,i+1$i+1 = - = diﬁnZL’n, i = 1,2,...,7’L and for 7 = 1 we get
T = 2xn, k € N(1) and = = x1, k & N(1), k # 1. Similarly, for i = n
we get xp = 221, kK € N(n) and =, = 21,k € N(n), k # n. Thus we have
r1 = x, and two type of eigencomponents x; and 2z; in eigenvector X, which
is a contradiction as G is regular graph of diameter 2. Hence G is complete
graph K,,. Conversely, one can easily see that the equality holds in (2.2) for
complete graph K,,. Hence the proof.

|
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3. NORDHAUS-GADDUM TYPE RESULTS FOR p1(G)

Theorem 3.1. Let G be a connected graph on n > 4 vertices with a connected
complement graph G. Let D and D be the diameters of graphs G and G,
respectively. Then

2(n =1 (k+1) < p1(G) + p1(G) <2[(2K = 1)(n—1) +(A=9)], (3.1)

where k = min{D, D} and k' = maxz{D, D}. The equality holds if and only if
both G and G are reqular graphs of diameter 2.

Proof. Let m and m be the number of edges of G and G. Therefore m + m =
(5)-
Lower bound: From the Corollary 2.2, we have

(@) + (@) = D 1) 20— 1)+ D 1) 20— 1)

_ é[mD+mD—(m+m)]+4(n—1)

~ 3

> —[k(m+m)—(m+m)] +4n—1)

4 nn—-1) n(n-1)
= - k 5 - 5 +4(n—-1)
= 2(n—-1)(k+1). (3.2)

Now suppose that equality holds in the left hand side of Eq. (3.1). Then
the equality holds in Eq. (3.2) if k = D = D = 2. Therefore by Corollary 2.2
we get both G and G are regular graph of diameter 2.

Conversely, let both G and G be regular graph of diameter 2, that is D =
D = k = 2. Then by Corollary 2.2, pi(G) = 4%(k — 1) 4+ 2(n — 1) and
p1(G) = 2 (k — 1) +2(n — 1). Hence

n

QY

p(G)+p1(G) =2(k+1)(n—1).

Upper bound: From the Lemma 2.5, we have

p1(G)+p(G) < 2[((n—-1)(D-1)4+Al4+2[(n—-1)(D—-1)+n—1-4]
= 2[(n—1)(D+D)—(n—1)+ (A —9)]
< 2[(2K' —=1)(n—1)+ (A =) (3.3)
Now suppose that equality holds in the right hand side of Eq. (3.1). Then
the equality holds in Eq. (3.3) if ¥’ = D = D = 2. Therefore by Lemma 2.5
we get both G and G are regular graphs of diameter 2.

Conversely, let both G and G be regular graph of diameter 2, that is D =
D = k' = 2. Then by Lemma 2.5, p; (G) = 2[n—1—A] and p;(G) = 2[n—1-4].
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Hence
p1(G) + p1(G) =2[3(n — 1) + A - 4.
O

The following theorem gives an upper bound for p;(G) + p1(G) in terms of
graph parameters like order n, maximum degree A and minimum degree d.

Theorem 3.2. Let G be a connected graph on n > 4 vertices with a connected
G. Then

p1(G) + Pl(é)

8(n —1)%(D —1)?(2D —1)(2D —1)(D + D — 1)
+ 22D —1)[2(n—1)?[D*(2D —1)* — (D — 1)*(2D — 1)
+ (n—2)(2D —1)%(2D — 1)(A = §)]

= 2(2D —1)(2D - 1)(D + D — 1)
8(n —1)2D?(2D —1)(2D —1)(D+ D — 1)
- 22D -1){2(n—1)?[D*(2D — 1) — (D — 1)?(2D — 1)?]
n + (n—2)(2D-1)(2D - 1)*(6 — A)}

202D —1)(2D — 1)(D + D — 1)
Proof. By the inequality (2.2) from Theorem 2.6, we get

p(G)+p(G) < V(n—1)[A(n—1)(D 1% +22D ~1) 2m + (n - 2)4]

+ /(= Dl4(n — 1)(D — 1)?] + 22D — 1)[2m + (n — 2)A].

Then we get
p1(G) + p1(G)
< \/(n —1)[4(n—1)(D-1)2]+2(2D — 1) 2m + (n — 2)A]

+ =D —1)(D = 12+ 22D — 1)[2(n — 1) —2m — (n—2)3], (3.4)

as m = (g) —m, and A =n —1—4, where m, D are the number of edges and
diameter of G. Consider the function

f(m)
= Vn—1)[4n-1)(D—-1)2]+2(2D - 1)[2m + (n — 2)A]

+ \/ (n—1)[4(n — 1)(D — 1)2] +2(2D — 1)[2(n — 1)2 — 2m — (n — 2)6]. (3.5)
One can easily get that
(n—1)? [D*(2D —1)? — (D — 1)%(2D — 1)?]
—(n=2)(2D -1)(2D - 1) [(2D — 1)A + (2D — 1)¢]

f(m) < (2D —1)(2D - 1)4(D+ D — 1)
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Now, from the equations (3.4) and (3.5), we get the required result. O

Corollary 3.3. Let G be a connected graph on n > 4 vertices and G be its
complement graph. If D = D, then

p(G)+p(G) < 2V/A(n—1)2(D = 1)2+ (2D — 1)(n —2)[2(n — 1) + (A - 9)],

where D and D are the diameters of G and G, respectively.

4. ON p1(G) OF BIPARTITE GRAPHS

In this section we present upper bounds for the complementary distance
signless Laplacian spectral radius of bipartite graphs in terms of diameter and
number of vertices and characterize the extremal graphs.

Theorem 4.1. Let G be a connected bipartite graph on n vertices with bipar-
tition of vertices as V(G) = V1 U Vy where |Vi| = p, |Va| = q. Then

pi(G) < S(D(3n—4)~2(n—2) (4.1)

1\/ [D(3n —4) — 2(n — 2)]?

T3\ 4 [2D(Dn? —3Dn+2D —n® +5n — 2pq —4) + 4(pg —n+1)] ’

with equality if and only if G is K, 4.

Proof. Let Vi = {v1,v2,...,vp} and Vo = {vp41,Upt2, ..., Uptq}, where p+¢q =
n. Let X = (z1,22,...,7,)T be an eigenvector of C DLT(G) corresponding to
the spectral radius p;(G) of a graph G. Let us assume that x; = max,, ev, Tk
and x; = maxy, ev, Tk-

For v; € V7,
P p+q
(@i = Y (A4 D—dp)(wr+a)+ Y, (14D —dy)(wy + )
k=1 ki k=p+1
< [D@2p+q-2) - 2p—1)]ws + Daxy. (42)
For v; € Vs,
p pt+q
p(Glz; = Z(l + D —dig)(z1 + 75) + Z (1+ D —dig) (wp, + ;)
k=1 k=p+1,k#j
< Dpx; +[D(2q+p—2)—2(¢—1)] ;. (4.3)

Since G is connected, hence x > 0, for all vy, € V(G). From (4.2) and (4.3),
we get

[p1(G) = (D2p+q—2) —2(p—1)][p1(G) = (D(2q + p— 2) — 2(q — 1))] < D*pq,

as xj,x; > 0.
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That is,
Pi(G) = pr(G) [D(2(n — 1) + (n = 2)) = 2(n — 2)] + D*(2n* — 6n + 4)
—2D(n? —5n 4 2pg +4) +4(p — 1)(g — 1) < 0.

From the above inequality we get the required result (4.1).

Now suppose that equality holds in (4.1), then all inequalities in the above
argument must be equal.
From the equality in (4.2), we get
xp =xj, and vv, € E(G), Vo, € Va.
From the equality in (4.3), we get
zp =z, and vjug € E(G),Yu, € V1.

Thus each vertex in each set is adjacent to all the vertices on the other set and
vice versa. Hence G is complete bipartite graph K, 4.

Conversely, it is easy to see that (4.1) holds for complete bipartite graph
Ky q. O

Theorem 4.2. Let G be a connected bipartite graph of order n and size m with
bipartition of the vertex set as V(G) = Vi U Va, where |V1| = p and |Va| = ¢,
p+q=mn. Then

p1(G) (4.4)

1 *+\/A*2—4{2(D—1)[2(pq—n+1+(p—1)A2+(q—1)A1)
+ (D =2)(n(n — 1) = 2pg)]} ’

where A* = 2(D — 1)(n — 2) + n(D — 2) + 2(A1 + As), &Ny and ANg are the
mazimum degree among vertices from Vi and Vs, respectively.

<
-2

Proof. Let Vi = {v1,ve,...,vp,} and Vo = {vp11,0p12,...,Uptq}. Let X =
(71,22,...,2,)T be a Perron eigenvector of CDL*(G) corresponding to the
maximum eigenvalue p; (G) such that z; = maz,,cv, Tx and £; = Maz,, ev, Tk
Then we have, for v; € V7,

p p+q
(@i = > (A+D—dp)(wx+a)+ Y, (1+D—di)(wk + )
k=1,k#i k=p+1

< 2M0-1)p—-1)+¢q(D—2)+20]z; + [g(D — 2) +204] z;. (4.5)
For v; € Vs,

p p+q
p(@z; = Y (L+D—dp)ep+z)+ Y (1+D—d)(ax+a))
k=1 k=p+1,k#£]
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Combining the inequalities (4.5) and (4.6), we arrive at
[p1(G) = (2(D = 1)(p— 1) + q(D = 2) + 241)]
X [p1(G) = (2(D = 1)(¢ — 1) + p(D — 2) +242)].
Since x > 0for 1 <k <p-+gq,

PL(G) = pr(G) [2(D — 1)(n — 2) +n(D = 2) +2(L1 + L2)] +2(D — 1)

X [2(pg —n+1+(p—1)D2+ (¢ = 1)01) + (D =2)(p* +¢* — 1)] 0. (4.7)
From the inequality (4.7) we get the desired result.

For the equality, we have x; = z) for k = 1,2,...,p and z; = =} for
k=p+1,p+2,...,p+ q. This means that the eigenvector  has at most
two different coordinates, the degrees of vertices in V; and V5 are equal to A\
and Ao, respectively, implying that G is a semi-regular graph. If G is not a
complete bipartite graph, it follows from p/A; = ¢/\y that A1 < ¢ and Ay < p

and the eccentricity of every vertex must be equal to 3. (]

Corollary 4.3. Let G be a connected bipartite graph of order n and size m with
bipartition of the vertex set as V(G) = Vi U Va, where |V1| = p and |Va| = g,
p+q=mn. Let A1 and Ny be the mazimum degree among vertices from Vi and
Vs, respectively. If Ay = Ny = A, then

1] A2 —4{2(D - 1) [2(pg —n+ 1+ A(n—2)
@ = [‘4 \/ H(D —2)n(n— 1) - 2p0)]} 49

where A =2(D —1)(n — 2) +n(D — 2) + 4A.

5. EIGENVALUES OF CDL*(G) oF GRAPHS OBTAINED BY SOME GRAPH
OPERATIONS

In this section we compute eigenvalues of the complementary distance sign-
less Laplacian matrix with respect to some graph operations. The following
lemma will be helpful in the sequel.

Ay Ax
A1 A
Then the spectrum of A is the union of the spectra of Ag + Ay and Ag — Ay.

Lemma 5.1. [20] Let A = [ } be a symmetric 2 x 2 block matriz.

The graph G 17 G is obtained by joining every vertex of G to every vertex
of another copy of G.

Theorem 5.2. Let G be a connected r-reqular graph on n-vertices with diame-
ter D < 2. Ifr, Ao, A3, ..., Ay are the eigenvalues of the adjacency matriz of G,
then the eigenvalues of the complementary distance signless Laplacian matriz
of G~ G are
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4Dn — 2D — 2n + 2 + 2r,
2Dn — 2D — 2n + 2+ 2r and

2Dn —2D —n+24+r+X;, 2times, 1=2,3,...,n.

Proof. As G is an r-regular graph of diameter D < 2, the complementary
distance signless Laplacian matrix of G 57 G can be written as
2Dn—D—-n+r+1)1

+DA+ (D —-1)A bJ

DJ 2Dn—D—-n+r+1)1
+DA+ (D -1)A
where A is the adjacency matrix of G, A is the adjacency matrix of G, J is
a matrix of order n x n whose all entries are equal to 1 and [ is an identity
matrix of order n. Since A = .J — I — A, then by applying Lemma 5.1, we get

the result. O

Definition 5.3. [25] Let G be a graph with vertex set V(G) = {v1,va,...,0,}.
Take another copy of G with the vertices labeled by {u1,us,...,u,} where u;
corresponds to v; for each i. Make u; adjacent to all the vertices in N(v;) in
G, for each i. The resulting graph, denoted by D»G is called the double graph
of G.

Theorem 5.4. Let G be a connected r-regular graph on n vertices with diam-
eter 2 and let r, A2, Aa, ..., Ay be the eigenvalues of the adjacency matriz of G.
Then the eigenvalues of the complementary distance signless Laplacian matriz

of D2G are
2r(D—1)42n+D(n+r—1),
D(n+r—1), n times, and

20(D—-1)+ D(n+r—1), i=2,3,...,n.

Proof. By definition of DG, the complementary distance signless Laplacian
matrix of DG is of the form

DA+ A+ (D(n+r)—(D-1))I DA+ A+1

DA+ A+1 DA+ A+ (D(n+r)—(D-1))1

where D is the diameter of graph G, A is the adjacency matrix of G, A is the
adjacency matrix of G and I is an identity matrix. Since A = .J — I — A, then
by applying Lemma 5.1, the result follows. (I
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6. BOUNDS FOR THE COMPLEMENTARY DISTANCE SIGNLESS LAPLACIAN
ENERGY

In this section we obtain some bounds for the complementary distance sign-
less Laplacian energy of a graph. To preserve the main features of the com-
plementary distance energy and complementary distance Laplacian energy and
bearing in mind the Eq. (1.3), we define here

1 n
i=pi—— Y Cla(v), i=12,..n, 6.1
&i=p n 2 alvg), i n (6.1)

where p;, i = 1,2,...n are the eigenvalues of CDL™(G).

Definition: Let G be a connected graph of order n. Then the complementary
distance signless Laplacian energy of G, denoted by Ecpr+(G) is defined as

Fopi-(@) =Y 161= Y o=+ " CTa(w,)| (6.2)

i= j=1

Lemma 6.1. Let G be a connected graph of order n. Then

igi =0 and igf =28,
i=1 i=1

where

2
n

1 1< )
S=s+5> |CTo(w) > CTo(;)| and s= »  (1+D—dy)*.

i=1 j=1 1<i<j<n
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Proof.
Z Pi

i=1

i=1

Now,

=1
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trace[CDL™(G)] = ZCTg(vi) and
i=1

trace[CDL™ (G))?

n

2 Y (1+D-dy)?+ ) (CTa(v:))?

1<i<j<n i=1

2s + Z(CTG(%‘))Z

i=1
n

Z Pi — %ZCTG(W)

i=1 =1

D pi=d CTa(vy) =0,
i=1 j=1

O

Corollary 6.2. Let G be a connected graph of order n and size m with diameter

D <2. Then

S = 6mtnfn— 1) + 2(G) —

: n
=1


http://ijmsi.com/article-1-1017-en.html

[ Downloaded from ijmsi.com on 2026-01-30 ]

On complementary distance signless Laplacian spectral radius and energy of graphs 121

M:

where M1 (G) = > (da(vs))?.

i=1

Proof. If G is having diameter less than or equal to two, then G has m pairs
of vertices at distance 1 and (’2’) — m pairs of vertices at distance 2.
Therefore

-1
Z (14D —dy)? = 6m++(n)7
1<i<j<n
and
CT(’Ul) = Z(l + D — d”) = (’I’L -1+ dg(vl))
i=1
Therefore,

n

iﬁf =2 ) (+D-dy’*+) |C lZCTUJ
i=1 1<i<j<n i=1 n j=1
= 6m+nn—1)+> [dg(vi) -
=1
4m?

= 6m+n(n71)+Ml(G)77.

Theorem 6.3. Let G be a connected graph of order n. Then

2VS < Ecpr+(G) < V2nS.

Proof. By direct computation, we get

T = ZZ@ 1€;1)?

1=1 j=1
i=1 i=1 j=1

= 4nS - 2(Ecpr+(G))%.

Since T' > 0, hence Ecpr+(G) < v2nS.
n 2 n

Now, (Z §i> =0. This implies >> & +2 > (&)(&) =0
i=1

i=1 1<i<j<n
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Therefore,
28 = -2 Y (&)
1<i<j<n
< 20 ) (&)
1<i<j<n
< 2 ) l&lgl
1<i<j<n
Thus,
n 2
(Ecpr+(G))? = (Z&D)
i=1
= Z|&|2+2 > lallgl
1<i<j<n
> 2S+2S
= 4S.
Hence we get the desired. ([

Corollary 6.4. If G is a connected graph on n wvertices, then
Ecpr+(G) =z v2n(n —1).

Proof. Since d;; < D, for 4,7 =1,2,...,n, hence by Theorem 6.3 we have

Ecpr+(G)

A%
)

Z (1+D dl] %Z CTg(v; —*ZCTG 11])

1<i<j<n j=1

> (1+D-dy)?

1<i<j<n

oo

1<i<j<n

vV

v
N

n(n —1)
2
2n(n —1).

= 2

O
By Corollary 6.2 and Theorem 6.3, we get the following immediate corollary.

Corollary 6.5. Let G be a connected graph with n vertices, m edges and D < 2.
Then
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2
Ecpr+(G) > \/12m +2n(n—1)+2M;(G) — 8% and

Ecpp+(G) < /6mn+n?(n —1) + nbi(G) — 4m?,

n
where My (G) = Y (da(vs))?.
i=1
Lemma 6.6. [28] Let a1, as,...,a, be non-negative numbers. Then
EDSTENY 1 O B D oP D oy
" i=1 i=1 i=1
1 n n 1/n
< -1) = i~ i
< nn-1) - ;a <i1:[1a >

Lemma 6.7. Let G be a connected graph with n vertices, I is the unit matriz

det <CDL+(G) S OT(vi)I) . Then
=1

of order n and I' =

\/25 +n(n— DI < Eopr+(G) < \/2(71 — 1)S + nI@/n).

Proof. Let a; = |&]?,i=1,2,...,n and

=1

PraAL 2/
= n n—<H|§z‘|>

i=1

i n n 1/n
K = n ;Z&F(H&F)
=1

= 28 —nr#/n,

By Lemma 6.6, we get

n n 2
K<n) |G- (Z |§i|2> <(h-1K.
i=1 i=1
That is,
28 —nl'?" < 2nS — (Ecpp+ (G)? < (n — 1)[28 — nl'?/").

By simplification of above inequality we get the required result.
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