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ABSTRACT. In this paper, (p,q)-Lupas Bernstein Stancu operators are
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1. INTRODUCTION AND PRELIMINARIES

In 1912, S.N. Bernstein [6] introduced his famous operators B,, : C[0,1] —
C'[0, 1] defined for any n € N and for any function f € C]0, 1]

Bo(f; ) :zn:( Z >xk(1—x)"kf<7k;>, z€0,1]. (1.1)

k=0
and named it Bernstein polynomials to provide a constructive proof of the
Weierstrass theorem [20].
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Further, based on g¢-integers, Lupag [21] introduced the first ¢-Bernstein
operators [6] and investigated its approximating and shape-preserving proper-
ties. Another g-analogue of the Bernstein polynomials is due to Phillips [38].
Since then several generalizations of well-known positive linear operators based
on g-integers have been introduced and their approximation properties studied.

Recently, the applications of (p,q)-calculus (post quantum calculus)
emerged as a new area in the field of approximation theory [20]. The
development of post quantum calculus has led to the discovery of various
generalizations of Bernstein polynomials involving (p, g)-integers. The aim
of these generalizations is to provide appropriate and powerful tools to
application areas such as numerical analysis, computer-aided geometric design
[7] and solutions of differential equations.

Mursaleen et al [27] introduced the concept of post quantum calculus in
approximation theory and constructed the (p,g)-analogue of Bernstein opera-
tors defined as follows for 0 < ¢ < p < 1:

n n—k—1
1 n k(k—1) s s k]p,
Bnpa(fi2) = o [ k ] por o I 0 -a') f( kLn]rn? ) el
[ E— v =0 p P,q

(1.2)
Note when p = 1, (p, q)-Bernstein Operators given by (1.2) turns out to be

Phillips ¢g-Bernstein Operators [38].

Also, we have

i
L

(1—2) (p* —¢°x) = (1 —z)(p — qz)(p” — ¢*2)...(0" " — ¢" ')

p.q

I
=

S

(_ka(nfk)(;—k—l)qk(kz—n [ Z ] s

o

=0 p.q

Further, they applied the concept of (p,q)-calculus in approxima-
tion theory and studied approximation properties based on (p, ¢)-integers
for Bernstein-Stancu operators, (p,q)-analogue of Bernstein-Kantorovich,
(p, g)-analogue of Bernstein-Shurer operators, (p,q)-analogue of Bleimann-
Butzer-Hahn operators and (p,q)-analogue of Lorentz polynomials on a
compact disk in [28, 31, 32, 33, 35].

On the other hand, Khalid and Lobiyal defined (p, ¢)-analogue of Lupag
Bernstein operators [17] as follows :
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For any p > 0 and ¢ > 0, the linear operators L, . : C[0,1] — C[0,1] as

pn—k [k]p,q n (n—k)(n—k—1) k(k—1) k _ n—k
n f( [n]p.q ) |: k :| p 2 q > € (1 Jf)
T C) — Pyq
Lyg(fim) =3 T _
k=0 [I{r'(1—-2)+q¢ 'z}
=1
(1.3)
are (p, q)-analogue of Lupag Bernstein operators.

Again when p = 1, Lupasg (p,q)-Bernstein operators turns out to be
Lupas ¢g-Bernstein operators as given in [22, 37].

When p = ¢ = 1, Lupas (p, ¢)-Bernstein operators turns out to be classical
Bernstein operators [6].

They studied two different techniques as de-Casteljau’s algorithm and
Korovkin’s type approximation properties [17]: de-Casteljau’s algorithm and
related results of degree elevation reduction for Beézier curves and surfaces
holds for all p > 0 and ¢ > 0. However to study Korovkin’s type approximation
properties for Lupasg (p, ¢)-analogue of the Bernstein operators, 0 < ¢ < p <1
is needed.

Based on Korovkin’s type approximation, they proved that the sequence
of (p,g)-analogue of Lupas Bernstein operators Ly . (f,z) converges uni-
formly to f(z) € C[0,1] if and only if 0 < g, < p, < 1 such that lim ¢, =1,

n—oo

lim p, = 1 and 1Lm gr = 1. On the other hand, for any p > 0 fixed and

n—roo

p # 1, the sequence Ly (f,z) converges uniformly to f(z) € C[0,1] if and
only if f(x) = ax + b for some a,b € R.

Furthermore, in comparison to g-Bezier curves and surfaces based on
Lupasg g-Bernstein rational functions, their generalization gives more flexibility
in controlling the shapes of curves and surfaces.

Some advantages of using the extra parameter p have been discussed
in the field of approximations on compact disk [35] and in computer aided
geometric design [17].

For more details related to approximation theory [20], one can refer [1, 2,
3,5,8,9,12,13, 14, 15, 18, 19, 22, 23, 24, 34, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48].

Let us recall certain notations of (p, ¢)-calculus.
For any p > 0 and ¢ > 0, the (p, ¢) integers [n], , are defined by
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P 9" when p#q#1

pP—q

ne ne ne e n p"~ ', when p = 1
[n]pﬂ +p 2+ 3q2+...+pq’2—|—q 1_ p P=q#

[n]g, when p =1
n, whenp=q=1

where [n], denotes the ¢g-integers and n = 0,1, 2,

The formula for (p, ¢)-binomial expansion is as follows:

(az +by), Zp(n Gl k““ 1) [ Z} "R Ry
p,q
(@ +y)yq = (@ +y)pe+ay) Pz +¢%y) - (" a4+ ¢ y),
(1- x)pq =(1—2)p—qx)p* - @x)--- (P = " la),

where (p, ¢)-binomial coefficients are defined by

v

Details on (p, ¢)-calculus can be found in [10, 11, 27].

Also, we have (p7 q)-analogue of Euler’s identity as:

p =(1-2)(p—q2)p* — ¢*2)...(p" ' — ¢" ')

n
k (n— k)(n k—1) k(k—1) n
:5 q 2 z*.
k
k=0

p,q

\ \

|
\
Q.
H

Again by some simple calculations and using the property of (p,q)-
integers, we get (p, ¢)-analogue of Pascal’s relation as follows:

]l ], e

p,q

{H =p”‘k[Z:H +q’“[”;1} : (1.5)

p.q p.q p.q

We recall some results from [17] for Lupas (p,q)-Bernstein operators,
which reproduces linear and constant functions.
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Some auxillary results:
n u —
(1) Lp,q(lﬂ u+1) =1

(2) Ly (6, 257) = o7

(3) Lp (% 25) = s b

or equivalently for z = _t5

() =1, (1.6)

Ly (tz) =z, (1.7)

" (t2 CC) — p € + q2 .CE2 [TL — 1]1’%‘1'
P lpg P —2)+qz [nlpg

2. CONSTRUCTION OF (p, q)-LUPAS STANCU OPERATORS

In this section, we introduce (p, ¢)-Lupag Stancu operators as follows:

For any p > 0 and ¢ > 0, the linear operators Ly , : C[0,1] — C[0,1]

- "k (kg +a
FERUE RS o Coml T I (2.1)
Py ’; [lpq + B P,

k,n P
and by () is given by

k
b (t) = 10 , (2.2)

p.q n
[[{p=t(1 1) + ¢~}
1

[ n ] p(n%)(;—k%)qk(kgn P (1 — gy

j=
where 0 < a < .
We give some equalities for operators (2.1) in the following lemma.

Lemma 4.1. The following equalities are true:

(i) Lyl (L) =1,

n,p,q
(i) L o (4 w) = et
B 2n 1 Pllpginlpg 2, [lpg(adp™ ) 2
(i) L3 (%5 2) = mrar oty rae = + L C t Gl
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Proof. Proof of part (i) is obvious.

n +a
a,p p’q k,n
N e

=0

= W+ 2D T a5

So from inequalities (1.6) and (1.7), we get the result.

Proof (iii)

k=0
1 2n—2k k,n
= o L B2 k)2 b
([n]p,q + ﬂ)Q _p [ ]Pq P,q (t)
20" R g (1) a%g;;(t)}
1 _
- - |a .
(nlpg + B)?| + B + C}

2 { i ] PR T (-t
p,q

H{pJ =0+ 't}

j=1

n—1 (n—k)(n—k—1) k(k—1) k

n k—1 p 2 q u
2n (k] " pg

A = [nlp o7y " :

B )
=P {7 + ¢ —1u}
j=1

On shifting the limits and on replacing k by k + 1, we get

n—1 (n—k=D(n—k=2) k(+1) p
_ 2 P,q
A = [nfp "Z p2h+2 o1 ’

k=t [ {p/ +¢/u}
j=1

(%)

nfl

[ n—1 :| (n—k—1)(n—k—2) k(k+l)
2 q 2

k
_ p,q
- ’LL+ 1 : : k+2 n—2 ) o
k=0 IT{r + (%)}

j=0
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Using [k +1],, =p" + qlk]p,q, we get our desired result:

. [ n—1 ] <n7k—1)2<nfk—2)qk<k2+1> (%)k
A= oy Pl Bl
= p ] ph+2 n—2 )
= T + 09 (2)
]:
— [TL] pnfl u q2u2[n]p7Q[n_1]P»q
P ud (u+1)(p+qu)
equivalentl
’ A [n].gp" p— q2[n]p,q[n_”p,qm2
-l (1 —2)+qr)
Similarly
n (k) (n—k=1) k(k—1) e
d [k]{k} P e T -t
B = 2ap™ )y — 2 ,
Z: p* T (i1 1— j—1
i L0+ a0
j:

n—1 (n=B)(n=k=1) k(-1
2 q 2 u
k—1

p,q

s . .
=P [{p~" + ¢ u}

Jj=1

After shifting the limits and on replacing k by k + 1, we get

n—1 (n—k—1)(n—k—2) k(k—1)
qu\k
. ol { k } p 2 q 2 (7)

1
B = 2 n - p,q ,
aln]p ) p n—2 o
h=0 {r’ +¢ (L)}
j=0
which implies
B = 2an], 4.
Similarly
n (n—k)(n—k—1) k(k—1) _
n[k] p oz q =z th{a—t)F
C = Oé2 p.q — ,
Z i—1(1 — j—1
k=0 [[{p7— (1 —1)+ ¢t}
j=1

)

49
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O

Theorem 2.1. Let 0 < g, < p, < 1 such that lim p, = 1, lim ¢, = 1,
n—oo

n— oo

li_>m qp =1 and for f € C[0,1], we have lim |8 (f;z) — f(z)| = 0.

Proof. Let us recall the following Korovkin’s theorem see [20]. Let (7},) be a se-
quence of positive linear operators from C/a, b] into C[a, b]. Then lim || T, (f, z)—

f@)llcfa,p) =0, for all f € Cla,b] if and only if lim ||, (f;, ©) — fi(2)lcja,p) = O,
for i =0,1,2, where fo(t) =1, fi(t) =t and fao(t) = t2.
O

3. THE RATE OF CONVERGENCE

In this section, we compute the rates of convergence of the operators

L%:gq( f;x) to the functions f by means of modulus of continuity, elements of

Lipschitz class and peetre’s K-functional.

Let f € C]0,1]. The modulus of continuity of f denoted by w(f,d) is defined
as:

w(f,9) = sup |f(y) — f(2)].

y,x€[0,1], ly—z|<

where w(f;d) satisfies the following conditions: for all f € C]0, 1],

lim w(f;6) = 0. (3.1)

and

1) - 1@l < wiro) (5 41). (3.2)

Theorem 3.1. Let 0 < g <p <1, and f € C[0,1], and § > 0, we have

ILop o (f32) = f@)lleqo,) < 20(f56n)

where
_ ¢*[Mpg[n —1pq _ [n)p,q — B P n]pg — 208
on = (([”]p,q + B)2(p(l —2) +qz) [nfp, + 5) " ( ([n]pq + B)? )
a? :
" Wl + 9
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Proof. From lemma (4.1) we have

B (p )2 ) = qz[n}p,q[n_l]p,q . [n]pg — B 22
[Enipq(t = o)) (([n]p,q T —x) T @) [y T ﬁ)

p"tnlpe — 208 . o?
*( ([nlpq + B2 ) T [l + B2

For x € [0, 1], we take

gl - £@)] < w014 JERL - o7 0t

then we get

IL58F52) ~ 1@ et < wifso {14 53,60 - o )|
. 1 1 ¢ [n]p,qln — 1pg
w5 (e G
_ [n]pq — B pn_l[n]pyq —2af
[n]p ¢ T 5) * ([n]p,q +B)? )

If we choose

_ @*[n]p,q[n — Upg e — 8
on = [<([n]p,q + B2l —2)+qz) [n]pe + ﬁ)

pnil[n]p,q —2ap a? :
N ( (nlpq + B ) T (lya + 97

2
Then we have

LS5 o (F:2) = f@)llopo) < 2w(f30n).

So we have the desired result. O

Now we compute the approximation order of operator L% ‘g 0 term of the
elements of the usual Lipschitz class.
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Let f € C[0,1] and 0 < p < 1. We recall that f belongs to Lipas(p) if the
inequality

[f (@) = f(y)l < Mz —y|?; for all z,y € [0,1] (3-4)
holds.

Theorem 3.2. For all f € Lipp(p)

1288 (Fi2) = f(@)llcpy < Mg
where

¢ []p,q[n — 1lpg [n]p,q — B

= [(([nm R T T 5)

p”‘l[n]pﬂ —2af3 a? 2
( ([l + B ) (OYETE

2

+

and M is a positive constant.

Proof. Letf € Lipp(p) and 0 < p < 1. by (3.4) and linearity and monotonicity

of L%;qu then we have

IL52 o(Fi) — (@) < L2 (1) — f(@)]: )
< L2 (It - ol ).

Applying the Holder inequality with m = % and n = Zf—p, we get

LB (fix) = f(2)] < (L8 ((t —2)%2))%. (3.5)

n,p,q n,p,q
if we choose § = ¢, as above, then proof is completed.

Finally, we will study the rate of convergence of the positive linear operators

L%;gq by means of the Peetre’s K-functionals.

C?[0,1] : The space of those functions f for which f, f, f”' € C[0,1]. we recall

the following norm in the space C2[0, 1] :

I fllc2i00) = fllcoy + 1 e + 11 o

We consider the following Peetre’s K-functional

K(f,6):= inf ]{Ilfgllcm,u i 5||9||C2[o,1]}-

geC?(0,1
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Theorem 3.3. Let f € C[0,1]. Then we have

ILspq(f52) = f(@) ooy < 2K(f56,)
Where K(f;0,) is Peetre’s functional and

1 qQ[n]p,q[n —1lpg _ n)p,g —
o = 4(([“]19,01 + B)?(p(1 — ) + qx) npq + 5)
1 P nlpg — 208 1 a’ 1 [a] + [A]
*4( ([ + B >+4wmg+ﬂ>‘F2MMqHM'

Proof. Let g € C?[0,1]. If we use the Taylor’s expansion of the function g at
s = x, we have

Hence we get

(x)HCZ[O,l]

||anq( :E) ( )HCOl] <||anq((5_m);x)”0[0,l]

+ *Ilbaﬁ ((s = 2)%2) o, l9(@)lle2po,1y-

(3.6)
From the lemma (2.1) we have
L85 (s = 2l < G
(3.7)
So if we use (3.3) and (3.7) in (3.6), then we get
e 1 pal® =g (nlp.q — B
ztoie) ot <[5 S B~ T )
1p"~ Ynlpq — 208 1 a?
(T E ) st ar O
[o] + (5]
+ 2B ot
(3.9)

On the other hand, we can write
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Linag(Fi2) = @)l < |L3po(f =g o)l + |L5p4(g52) — g(2))|
+ [f(2) - g(@)].

If we take the maximum on [0, 1], we have

||Lg75q( s2) — f(@)llejo,y < 2/1f - g||001]+\|anq(9, r) —g(x)|cpo,1- (3-10)
If we consider (3.8) in (3.10), we obtain

IE58(f0) = F@letnsy <20f = aloon + [ (g gt

) ()

N U & RS /1 PR
e e L
If we choose
_} q’[n]pgln —1pq _ npg —
o = 4(([”]1)#1 + B)?(p(1 — ) + qx) ”pq + 5)
1p" nlpg —208) 1 o 1 o +18
*(4 (g + B >+4<[ Mg T 02 2l + 8

then we get

1228 (fiz) — f(@)lleo §2{||f—90[0,1] + 5n|9($)|02[0,1]}- (3.11)

Finally, one can observe that if we take the infimum of both side of above
inequality for the function g € C?[0, 1], we can find

|| npq( ) f(x)HC[O,l] < 2K(f75n)

4. THE RATES OF STATISTICAL CONVERGENCE

At this point, let us recall the concept of statistical convergence. The statis-
tical convergence which was introduced by Fast [41] in 1951, is an important
research area in approximation theory. In [41], Gadjiev and Orhan used the
concept of statistical convergence in approximation theory. They proved a
Bohman-Korovkin type theorem for statistical convergence.
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Recently, statistical approximation properties of many operators are investi-
gated in [4, 25, 26, 29, 30].

A sequence x = (zy) is said to be statistically convergent to a number L if for
every € > 0,

{Ke N:|zg,—L|>¢} =0,

where §(K) is the natural density of the set K C N.

The density of subset K C N is defined by
o1
§(K) :=lim ﬁ{the number k <n: ke K}

whenever the limit exists.
For instance, (N) = 1, §{2K :k€ N} = L and6{k*: K € N} = 0.

To emphasize the importance of the statistical convergence, we have an
example: The sequence

Ll; Zf k= m27

X = where m € N (4.1)

LQ; ’Lf k 7é m2.

is statistically convergent to Lo but not convergent in ordinary sense when
L, # Lo. We note that any convergent sequence is statiscally convergent but
not conversley.

Now we consider sequences q¢ = ¢, and p = p,, such that:

st—limg, =1, st —limp, =1, and st —limgq,, = 1. (4.2)

Gadjiev and Orhan [41] gave the following theorem for linear positive opera-
tors which is about statistically Korovkin type theorem. Now, we recall this
theorem.
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Theorem 4.1. If A, be the sequence of linear positive operators from C|a, b
to Cla,b] satisfies the conditions
st —lim || A, ((t";2)) — (2)"||c]0,1] =0 forv =0, 1, 2.

n

then for any function f € Cla, b,

st —1im |4, (f:) — fllcla.b] = 0.

Now we will discuss the rates of statistical convergence of Lg;gq operators.

Remark 4.2. For g € (0,1) and p € (q,1], it is obvious that

0, when p,q € (0,1)

7}1—{20 [n]p,q =

1—;, when p =1 and q € (0,1).

In order to reach to convergence results of the operator Ly (f;x), we take a
sequence ¢, € (0,1) and p, € (gn, 1] such that lim p, =1, lim ¢, = 1. So
n—oo n—oo
li = 0.
we get lim [n]y,q, = 00

Theorem 4.3. Let Lf{:gq be the sequence of operators and the sequences

p = pn and q = q,, satisfies Remark 4.2 then for any function f € C[0,1]

st —lim | L8 (f,.) = fll=0. (4.3)

,Pnsqn

Proof. Clearly for v = 0,
LeB (1,2) =1,

,Pndn
which implies
st—liérlHLf{fmqn(l;x) —1] = 0.
Forv =1
L3, () — @ || < |ty - —
o []p,.gn + B (1] p.gn + B
[]pn.q ) o ’
— ns4dn _ 1 :E +
‘ ([n]lln7% + ﬁ [n]pnﬂln + /B
< [n]Pan _ 1‘ + « ’
[n]pn,qn + [n]pmqn +5
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For a given € > 0, let us define the following sets.

U={n:||L% (t;z)—z| > €}

1,Pnqn
U/ _ -1 = [n}Pan >
{n [n]pn7Q7L + B} =
U"={n: < }.

— = >
(M]p.q0 + B
It is obvious that U C U" U U’,

So using

[1]p,.q
MHk<n:1l— =20 >},
[n]pn7Qn + ﬁ

then we get

T,Pnsqn

st —lim ||[L2F  (t;x) — 2| = 0.
n

Lastly for v = 2, we have

2 -1 1
HL%;&L o (t2 . x) _ $2|| S ’q [n]pvu(bb [n ]pn;Qn 5 — 1‘

o p(l —z)+qx ([n]pn,qn +B)

Ny, 200 + pn L 2 o?
+|[ ]pn,qn( P ) x’_’_‘ 2‘.
[n]pn7q72r + /6 ([n]Pan + ﬁ)
If we choose
2 -1 1
o, = q [n]pn,qn [n ]pn,qn 1

pA—x)+qr  ([n],, 4, +B)

1y 2
B, = [n]p,,.q, (200 +p" 1)
[M]pn,an + B
Tn = o
n= %5

([n}pmqn +B)
Then

st—lima, = st—1limpB, = st—Ilim~y, = 0.

Now given € > 0, we define the following four sets:

U = ||L°"B (t2 cx) — x2|| > e,

,PnsAdn
€

g}a

UQZ{n:BnZ§}7

Up={n:a, >
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€
U3:{n:'yn2§}.
is obvious that U C Uy |JUs | Us. Thus we obtain

BK <n: LR, (2 2) — 2] > )

S(S{Kgn:anzg} + 5{K§n:6n2§}+6{K§n:7n2§}.

So the right hand side of the inequalities is zero.

Then

st — lim ||L%£ o tT) =zl =0
i Prsdn

holds and thus the proof is completed.
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