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Abstract. In this paper, (p, q)-Lupas Bernstein Stancu operators are
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1. Introduction and Preliminaries

In 1912, S.N. Bernstein [6] introduced his famous operators Bn : C[0, 1] →

C[0, 1] defined for any n ∈ N and for any function f ∈ C[0, 1]

Bn(f ;x) =

n
∑

k=0

(

n

k

)

xk(1− x)n−kf

(

k

n

)

, x ∈ [0, 1]. (1.1)

and named it Bernstein polynomials to provide a constructive proof of the

Weierstrass theorem [20].
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Further, based on q-integers, Lupaş [21] introduced the first q-Bernstein

operators [6] and investigated its approximating and shape-preserving proper-

ties. Another q-analogue of the Bernstein polynomials is due to Phillips [38].

Since then several generalizations of well-known positive linear operators based

on q-integers have been introduced and their approximation properties studied.

Recently, the applications of (p, q)-calculus (post quantum calculus)

emerged as a new area in the field of approximation theory [20]. The

development of post quantum calculus has led to the discovery of various

generalizations of Bernstein polynomials involving (p, q)-integers. The aim

of these generalizations is to provide appropriate and powerful tools to

application areas such as numerical analysis, computer-aided geometric design

[7] and solutions of differential equations.

Mursaleen et al [27] introduced the concept of post quantum calculus in
approximation theory and constructed the (p, q)-analogue of Bernstein opera-
tors defined as follows for 0 < q < p ≤ 1:

Bn,p,q(f ;x) =
1

p
n(n−1)

2

n
∑

k=0

[

n

k

]

p,q

p
k(k−1)

2 x
k

n−k−1
∏

s=0

(ps−q
s
x) f

(

[k]p,q
pk−n[n]p,q

)

, x ∈ [0, 1].

(1.2)

Note when p = 1, (p, q)-Bernstein Operators given by (1.2) turns out to be

Phillips q-Bernstein Operators [38].

Also, we have

(1− x)np,q =

n−1
∏

s=0

(ps − qsx) = (1− x)(p− qx)(p2 − q2x)...(pn−1 − qn−1x)

=
n
∑

k=0

(−1)
k
p

(n−k)(n−k−1)
2 q

k(k−1)
2

[

n

k

]

p,q

xk.

Further, they applied the concept of (p, q)-calculus in approxima-

tion theory and studied approximation properties based on (p, q)-integers

for Bernstein-Stancu operators, (p, q)-analogue of Bernstein-Kantorovich,

(p, q)-analogue of Bernstein-Shurer operators, (p, q)-analogue of Bleimann-

Butzer-Hahn operators and (p, q)-analogue of Lorentz polynomials on a

compact disk in [28, 31, 32, 33, 35].

On the other hand, Khalid and Lobiyal defined (p, q)-analogue of Lupaş

Bernstein operators [17] as follows :
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For any p > 0 and q > 0, the linear operators Ln
p,q : C[0, 1] → C[0, 1] as

Ln
p,q(f ;x) =

n
∑

k=0

f

(

pn−k [k]p,q
[n]p,q

) [

n

k

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 xk (1− x)n−k

n
∏

j=1

{pj−1(1− x) + qj−1x}
,

(1.3)

are (p, q)-analogue of Lupaş Bernstein operators.

Again when p = 1, Lupaş (p, q)-Bernstein operators turns out to be

Lupaş q-Bernstein operators as given in [22, 37].

When p = q = 1, Lupaş (p, q)-Bernstein operators turns out to be classical

Bernstein operators [6].

They studied two different techniques as de-Casteljau’s algorithm and

Korovkin’s type approximation properties [17]: de-Casteljau’s algorithm and

related results of degree elevation reduction for Bèzier curves and surfaces

holds for all p > 0 and q > 0. However to study Korovkin’s type approximation

properties for Lupaş (p, q)-analogue of the Bernstein operators, 0 < q < p ≤ 1

is needed.

Based on Korovkin’s type approximation, they proved that the sequence

of (p, q)-analogue of Lupaş Bernstein operators Ln
pn,qn

(f, x) converges uni-

formly to f(x) ∈ C[0, 1] if and only if 0 < qn < pn ≤ 1 such that lim
n→∞

qn = 1,

lim
n→∞

pn = 1 and lim
n→∞

qnn = 1. On the other hand, for any p > 0 fixed and

p 6= 1, the sequence Ln
p,q(f, x) converges uniformly to f(x) ∈ C[0, 1] if and

only if f(x) = ax+ b for some a, b ∈ R.

Furthermore, in comparison to q-Bèzier curves and surfaces based on

Lupaş q-Bernstein rational functions, their generalization gives more flexibility

in controlling the shapes of curves and surfaces.

Some advantages of using the extra parameter p have been discussed

in the field of approximations on compact disk [35] and in computer aided

geometric design [17].

For more details related to approximation theory [20], one can refer [1, 2,

3, 5, 8, 9, 12, 13, 14, 15, 18, 19, 22, 23, 24, 34, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48].

Let us recall certain notations of (p, q)-calculus.

For any p > 0 and q > 0, the (p, q) integers [n]p,q are defined by
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[n]p,q = pn−1+pn−2q+pn−3q2+...+pqn−2+qn−1 =



































pn−qn

p−q
, when p 6= q 6= 1

n pn−1, when p = q 6= 1

[n]q, when p = 1

n, when p = q = 1

where [n]q denotes the q-integers and n = 0, 1, 2, · · · .

The formula for (p, q)-binomial expansion is as follows:

(ax+ by)np,q :=

n
∑

k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2

[

n

k

]

p,q

an−kbkxn−kyk,

(x+ y)np,q = (x+ y)(px+ qy)(p2x+ q2y) · · · (pn−1x+ qn−1y),

(1− x)np,q = (1− x)(p− qx)(p2 − q2x) · · · (pn−1 − qn−1x),

where (p, q)-binomial coefficients are defined by
[

n

k

]

p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.

Details on (p, q)-calculus can be found in [10, 11, 27].

Also, we have (p, q)-analogue of Euler’s identity as:

(1− x)np,q =

n−1
∏

s=0

(ps − qsx) = (1− x)(p− qx)(p2 − q2x)...(pn−1 − qn−1x)

=

n
∑

k=0

(−1)
k
p

(n−k)(n−k−1)
2 q

k(k−1)
2

[

n

k

]

p,q

xk.

Again by some simple calculations and using the property of (p, q)-

integers, we get (p, q)-analogue of Pascal’s relation as follows:

[

n

k

]

p,q

= qn−k

[

n− 1

k − 1

]

p,q

+ pk
[

n− 1

k

]

p,q

(1.4)

[

n

k

]

p,q

= pn−k

[

n− 1

k − 1

]

p,q

+ qk
[

n− 1

k

]

p,q

. (1.5)

We recall some results from [17] for Lupas (p, q)-Bernstein operators,

which reproduces linear and constant functions.
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Some auxillary results:

(1) Ln
p,q(1,

u
u+1 ) = 1

(2) Ln
p,q(t,

u
u+1 ) =

u
u+1

(3) Ln
p,q(t

2, u
u+1 ) =

u
u+1

pn−1

[n]p,q
+ qu

u+1 (
qu

p+qu
)
[n−1]p,q
[n]p,q

or equivalently for x = u
u+1

Ln
p,q(1, x) = 1, (1.6)

Ln
p,q(t, x) = x, (1.7)

Ln
p,q(t

2, x) =
pn−1x

[n]p,q
+

q2 x2

p(1− x) + qx

[n− 1]p,q
[n]p,q

. (1.8)

2. Construction of (p, q)-Lupaş Stancu Operators

In this section, we introduce (p, q)-Lupaş Stancu operators as follows:

For any p > 0 and q > 0, the linear operators Ln
p,q : C[0, 1] → C[0, 1]

Lα,β
n,p,q(f ;x) =

n
∑

k=0

f

(

pn−k [k]p,q + α

[n]p,q + β

)

bk,np,q (t) (2.1)

and bk,np,q (t) is given by

bk,np,q (t) =

[

n

k

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 tk (1− t)n−k

n
∏

j=1

{pj−1(1− t) + qj−1t}
, (2.2)

where 0 < α < β.

We give some equalities for operators (2.1) in the following lemma.

Lemma 4.1. The following equalities are true:

(i) Lα,β
n,p,q(1;x) = 1,

(ii) Lα,β
n,p,q(t;x) =

[n]p,qx+α

[n]p,q+β
,

(iii) Lα,β
n,p,q(t

2;x) = 1
([n]p,q+β)2

q2[n]p,q [n−1]p,q
p(1−x)+qx

x2 +
[n]p,q(2α+pn−1)

([n]p,q+β)2 x+ α2

([n]p,q+β)2 .
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Proof. Proof of part (i) is obvious.

Lα,β
n,p,q(t;x) =

n
∑

k=0

(

pn−k [k]p,q + α

[n]p,q + β

)

bk,np,q (t)

=
[n]p,q

[n]p,q + [β]
Ln
p,q(t;x) +

[α]

[n]p,q + [β]
Ln
p,q(1;x).

So from inequalities (1.6) and (1.7), we get the result.

Proof (iii)

Lα,β
n,p,q(t

2;x) =

n
∑

k=0

(

pn−k [k]p,q + α

[n]p,q + β

)

bk,np,q (t)

=
1

([n]p,q + β)2

[

p2n−2k[k]2p,qb
k,n
p,q (t)

+ 2αpn−k[k]p,qb
k,n
p,q (t) + α2bk,np,q (t)

]

=
1

([n]p,q + β)2

[

A + B + C

]

.

A = p2n
n
∑

k=0

[k]2

p2k

[

n

k

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 tk (1− t)n−k

n
∏

j=1

{pj−1(1− t) + qj−1t}

A = [n]p2n
n
∑

k=1

[k]

p2k

[

n− 1

k − 1

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 uk

n
∏

j=1

{pj−1 + qj−1u}
.

On shifting the limits and on replacing k by k + 1, we get

A = [n]p2n
n
∑

k=1

[k + 1]

p2k+2

[

n− 1

k

]

p,q

p
(n−k−1)(n−k−2)

2 q
k(k+1)

2 uk

n−1
∏

j=1

{pj + qju}

,

= [n]pn
u

u+ 1

n−1
∑

k=0

[k + 1]

pk+2

[

n− 1

k

]

p,q

p
(n−k−1)(n−k−2)

2 q
k(k+1)

2 ( qu
p
)k

n−2
∏

j=0

{pj + qj( qu
p
)}

.
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Using [k + 1]p,q = pk + q[k]p,q, we get our desired result:

A = [n]pn
u

u+ 1

n−1
∑

k=0

[pk + q[k]]

pk+2

[

n− 1

k

]

p,q

p
(n−k−1)(n−k−2)

2 q
k(k+1)

2 ( qu
p
)k

n−2
∏

j=0

{pj + qj( qu
p
)}

,

= [n]p,qp
n−1 u

u+ 1
+

q2u2[n]p,q[n− 1]p,q
(u+ 1)(p+ qu)

,

equivalently

A = [n]p,qp
n−1x +

q2[n]p,q[n− 1]p,q
(p(1− x) + qx)

x2.

Similarly

B = 2αpn
n
∑

k=0

[k]

pk

[

n

k

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 tk (1− t)n−k

n
∏

j=1

{pj−1(1− t) + qj−1t}
,

= 2α[n]pn
n
∑

k=1

1

pk

[

n− 1

k − 1

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 uk

n
∏

j=1

{pj−1 + qj−1u}
.

After shifting the limits and on replacing k by k + 1, we get

B = 2α[n]pn
u

u+ 1

n−1
∑

k=0

1

p

[

n− 1

k

]

p,q

p
(n−k−1)(n−k−2)

2 q
k(k−1)

2 ( qu
p
)k

n−2
∏

j=0

{pj + qj( qu
p
)}

,

which implies

B = 2α[n]p,qx.

Similarly

C = α2
n
∑

k=0

[

n

k

]

p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2 tk (1− t)n−k

n
∏

j=1

{pj−1(1− t) + qj−1t}
,

= α2.
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�

Theorem 2.1. Let 0 < qn < pn ≤ 1 such that lim
n→∞

pn = 1, lim
n→∞

qn = 1,

lim
n→∞

qnn = 1 and for f ∈ C[0, 1], we have lim
n

|Lα,β
n,p,q(f ;x)− f(x)| = 0.

Proof. Let us recall the following Korovkin’s theorem see [20]. Let (Tn) be a se-

quence of positive linear operators from C[a, b] into C[a, b]. Then lim
n

‖Tn(f, x)−

f(x)‖C[a,b] = 0, for all f ∈ C[a, b] if and only if lim
n

‖Tn(fi, x)−fi(x)‖C[a,b] = 0,

for i = 0, 1, 2, where f0(t) = 1, f1(t) = t and f2(t) = t2.

�

3. The Rate of Convergence

In this section, we compute the rates of convergence of the operators

Lα,β
n,p,q(f ;x) to the functions f by means of modulus of continuity, elements of

Lipschitz class and peetre’s K-functional.

Let f ∈ C[0, 1]. The modulus of continuity of f denoted by ω(f, δ) is defined

as:

ω(f, δ) = sup
y,x∈[0,1], |y−x|<δ

|f(y)− f(x)|.

where w(f ; δ) satisfies the following conditions: for all f ∈ C[0, 1],

lim
δ→0

w(f ; δ) = 0. (3.1)

and

|f(y)− f(x)| ≤ w(f ; δ)

(

|y − x|

δ
+ 1

)

. (3.2)

Theorem 3.1. Let 0 < q < p ≤ 1, and f ∈ C[0, 1], and δ > 0, we have

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2ω(f ; δn)

where

δn =

[

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
α2

([n]p,q + β)2

]
1
2

.
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Proof. From lemma (4.1) we have

|Lα,β
n,p,q(t− x)2;x) =

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

x2

+

(

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

x+
α2

([n]p,q + β)2
.

(3.3)

For x ∈ [0, 1], we take

|Lα,β
n,p,q(f ;x)− f(x)| ≤ w(f ; δ)

{

1 +
1

δ
(Lα,β

n,p,q(t− x)2 : x)
1
2

}

,

then we get

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ w(f ; δ)

{

1 +
1

δ
(Lα,β

n,p,q(t− x)2 : x)
1
2

}

≤ w(f ; δ)

{

1 +
1

δ

(

(
1

([n]p,q + β)2
q2[n]p,q[n− 1]p,q
(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β
) + (

pn−1[n]p,q − 2αβ

([n]p,q + β)2
)

+
α2

([n]p,q + β)2

)
1
2
}

.

If we choose

δn =

[

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
α2

([n]p,q + β)2

]
1
2

.

Then we have

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2ω(f ; δn).

So we have the desired result. �

Now we compute the approximation order of operator Lα,β
n,p,q in term of the

elements of the usual Lipschitz class.
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Let f ∈ C[0, 1] and 0 < ρ ≤ 1. We recall that f belongs to LipM (ρ) if the

inequality

|f(x)− f(y)| ≤ M |x− y|ρ; for all x, y ∈ [0, 1] (3.4)

holds.

Theorem 3.2. For all f ∈ LipM (ρ)

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ Mδρn

where

δn =

[

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
α2

([n]p,q + β)2

]
1
2

and M is a positive constant.

Proof. Letf ∈ LipM (ρ) and 0 < ρ ≤ 1. by (3.4) and linearity and monotonicity

of Lα,β
n,p,q then we have

|Lα,β
n,p,q(f ;x)− f(x)| ≤ Lα,β

n,p,q(|f(t)− f(x)|;x)

≤ Lα,β
n,p,q(|t− x|ρ;x).

Applying the Holder inequality with m = 2
ρ
and n = 2

2−ρ
, we get

|Lα,β
n,p,q(f ;x)− f(x)| ≤ (Lα,β

n,p,q((t− x)2;x))
ρ
2 . (3.5)

if we choose δ = δn as above, then proof is completed.

Finally, we will study the rate of convergence of the positive linear operators

Lα,β
n,p,q by means of the Peetre’s K-functionals.

C2[0, 1] : The space of those functions f for which f, f ′, f ′′ ∈ C[0, 1]. we recall

the following norm in the space C2[0, 1] :

‖f‖C2[0,1] = ‖f‖C[0,1] + ‖f ′‖C[0,1] + ‖f ′′‖C[0,1].

We consider the following Peetre’s K-functional

K(f, δ) := inf
g∈C2[0,1]

{

‖f − g‖C[0,1] + δ‖g‖C2[0,1]

}

.
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�

Theorem 3.3. Let f ∈ C[0, 1]. Then we have

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2K(f ; δn)

Where K(f ; δn) is Peetre’s functional and

δn =
1

4

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+
1

4

(

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
1

4

α2

([n]p,q + β)2
+

1

2

[α] + [β]

[n]p,q + [β]
.

Proof. Let g ∈ C2[0, 1]. If we use the Taylor’s expansion of the function g at

s = x, we have

g(s) = g(x) + (s− x)g′(x) +
(s− x)2

2
g′′(x).

Hence we get

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤‖Lα,β

n,p,q((s− x);x)‖C[0,1]‖g(x)‖C2[0,1]

+
1

2
‖Lα,β

n,p,q((s− x)2;x)‖C[0,1]‖g(x)‖C2[0,1].

(3.6)

From the lemma (2.1) we have

‖Lα,β
n,p,q((s− x);x)‖C[0,1] ≤

[α] + [β]

[n]p,q + [β]
.

(3.7)

So if we use (3.3) and (3.7) in (3.6), then we get

‖Lα,β
n,p,q(g;x)− g(x)‖C[0,1] ≤

[

1

2

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

1

2

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
1

2

α2

([n]p,q + β)2
(3.8)

+
[α] + [β]

[n] + [β]

]

‖g(x)‖C[0,1].

(3.9)

On the other hand, we can write
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|Lα,β
n,p,q(f ;x)− f(x)‖ ≤ |Lα,β

n,p,q(f − g;x)‖ + |Lα,β
n,p,q(g;x)− g(x)|

+ |f(x)− g(x)|.

If we take the maximum on [0, 1], we have

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2‖f − g‖C[0,1]+ ‖Lα,β

n,p,q(g;x)− g(x)‖C[0,1]. (3.10)

If we consider (3.8) in (3.10), we obtain

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤2‖f − g‖C[0,1] +

[

1

4

(

q[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

1

4

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
1

4

α2

([n]p,q + β)2
+

1

2

[α] + [β]

[n]p,q + [β]

]

‖g(x)‖C2[0,1].

If we choose

δn =
1

4

(

q2[n]p,q[n− 1]p,q
([n]p,q + β)2(p(1− x) + qx)

−
[n]p,q − β

[n]p,q + β

)

+

(

1

4

pn−1[n]p,q − 2αβ

([n]p,q + β)2

)

+
1

4

α2

([n]p,q + β)2
+

1

2

[α] + [β]

[n]p,q + [β]
,

then we get

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2

{

‖f − g‖C[0,1] + δn‖g(x)‖C2[0,1]

}

. (3.11)

Finally, one can observe that if we take the infimum of both side of above

inequality for the function g ∈ C2[0, 1], we can find

‖Lα,β
n,p,q(f ;x)− f(x)‖C[0,1] ≤ 2K(f, δn).

�

4. The Rates of Statistical Convergence

At this point, let us recall the concept of statistical convergence. The statis-

tical convergence which was introduced by Fast [41] in 1951, is an important

research area in approximation theory. In [41], Gadjiev and Orhan used the

concept of statistical convergence in approximation theory. They proved a

Bohman-Korovkin type theorem for statistical convergence.
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Recently, statistical approximation properties of many operators are investi-

gated in [4, 25, 26, 29, 30].

A sequence x = (xk) is said to be statistically convergent to a number L if for

every ǫ > 0,

δ{K ∈ N : |xk − L| ≥ ε} = 0,

where δ(K) is the natural density of the set K ⊆ N.

The density of subset K ⊆ N is defined by

δ(K) := lim
n

1

n
{the number k ≤ n : k ∈ K}

whenever the limit exists.

For instance, δ(N) = 1, δ{2K : k ∈ N} = 1
2 and δ{k2 : K ∈ N} = 0.

To emphasize the importance of the statistical convergence, we have an

example: The sequence

Xk =















L1; if k = m2,

L2; if k 6= m2.
where m ∈ N (4.1)

is statistically convergent to L2 but not convergent in ordinary sense when

L1 6= L2. We note that any convergent sequence is statiscally convergent but

not conversley.

Now we consider sequences q = qn and p = pn such that:

st− lim
n

qn = 1, st− lim
n

pn = 1, and st− lim
n

qnn = 1. (4.2)

Gadjiev and Orhan [41] gave the following theorem for linear positive opera-

tors which is about statistically Korovkin type theorem. Now, we recall this

theorem.
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Theorem 4.1. If An be the sequence of linear positive operators from C[a, b]

to C[a, b] satisfies the conditions

st− lim
n

‖An((t
ν ;x))− (x)ν‖C [0, 1] = 0 for ν = 0, 1, 2.

then for any function f ∈ C[a, b],

st− lim
n

‖An(f ; .)− f‖C [a, b] = 0.

Now we will discuss the rates of statistical convergence of Lα,β
n,p,q operators.

Remark 4.2. For q ∈ (0, 1) and p ∈ (q, 1], it is obvious that

lim
n→∞

[n]p,q =



















0, when p, q ∈ (0, 1)

1
1−q

, when p = 1 and q ∈ (0, 1).

In order to reach to convergence results of the operator Ln
p,q(f ;x), we take a

sequence qn ∈ (0, 1) and pn ∈ (qn, 1] such that lim
n→∞

pn = 1, lim
n→∞

qn = 1. So

we get lim
n→∞

[n]pn,qn = ∞.

Theorem 4.3. Let Lα,β
n,p,q be the sequence of operators and the sequences

p = pn and q = qn satisfies Remark 4.2 then for any function f ∈ C[0, 1]

st− lim
n

‖ Lα,β
n,pn,qn

(f, .)− f‖ = 0. (4.3)

Proof. Clearly for ν = 0,

Lα,β
n,pn,qn

(1, x) = 1,

which implies

st− lim
n

‖Lα,β
n,pn,qn

(1;x) − 1 ‖ = 0.

For ν = 1

‖Lα,β
n,pn,qn

(t;x) − x ‖ ≤

∣

∣

∣

∣

[n]pn,qn

[n]pn,qn + β
x +

α

[n]pn,qn + β
− x

∣

∣

∣

∣

=

∣

∣

∣

∣

(

[n]pn,qn

[n]pn,qn + β
− 1

)

x +
α

[n]pn,qn + β

∣

∣

∣

∣

≤

∣

∣

∣

∣

[n]pn,qn

[n]pn,qn + β
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

α

[n]pn,qn + β

∣

∣

∣

∣

.
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For a given ǫ > 0, let us define the following sets.

U = {n : ‖Lα,β
n,pn,qn

(t;x)− x‖ ≥ ǫ}

U ′ = {n : 1−
[n]pn,qn

[n]pn,qn + β
} ≥ ǫ

U ′′ = {n :
α

[n]pn,qn + β
≥ ǫ}.

It is obvious that U ⊆ U ′′ ∪ U ′,

So using

δ{k ≤ n : 1−
[n]pn,qn

[n]pn,qn + β
≥ ǫ},

then we get

st− lim
n

‖Lα,β
n,pn,qn

(t;x)− x‖ = 0. (4.4)

Lastly for ν = 2, we have

‖Lα,β
n,pn,qn

(t2 : x)− x2‖ ≤
∣

∣

q2[n]pn,qn [n− 1]pn,qn

p(1− x) + qx

1

([n]pn,qn + β)
2 − 1

∣

∣

+
∣

∣

[n]pn,qn(2α+ pn−1)

[n]pn,qn + β

2

x
∣

∣+
∣

∣

α2

([n]pn,qn + β)
2

∣

∣.

If we choose

αn =
q2[n]pn,qn [n− 1]pn,qn

p(1− x) + qx

1

([n]pn,qn + β)
2 − 1

βn =
[n]pn,qn(2α+ pn−1)

[n]pn,qn + β

2

γn =
α2

([n]pn,qn + β)
2 .

Then

st− lim
n

αn = st− lim
n

βn = st− lim
n

γn = 0.

Now given ǫ > 0, we define the following four sets:

U = ‖Lα,β
n,pn,qn

(t2 : x)− x2‖ ≥ ǫ,

U1 = {n : αn ≥
ǫ

3
},

U2 = {n : βn ≥
ǫ

3
},
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U3 = {n : γn ≥
ǫ

3
}.

It is obvious that U ⊆ U1

⋃

U2

⋃

U3. Thus we obtain

δ{K ≤ n : ‖Lα,β
n,p,q(t

2 : x)− x2‖ ≥ ǫ}

≤ δ{K ≤ n : αn ≥
ǫ

3
} + δ{K ≤ n : βn ≥

ǫ

3
}+ δ{K ≤ n : γn ≥

ǫ

3
}.

So the right hand side of the inequalities is zero.

Then

st− lim
n

‖Lα,β
n,pn,qn

(t;x)− x‖ = 0

holds and thus the proof is completed.

�
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37. S. Ostrovska, On the Lupaş q-analogue of the bernstein operator, Rocky mountain journal

of mathematics, 36(5), 2006.

38. G. M. Phillips, Bernstein polynomials based on the q-integers, The heritage of

P.L.Chebyshev, Ann. Numer. Math., 4, (1997), 511-518.

39. G. M. Phillips, A generalization of the Bernstein polynomials based on the q-integers

ANZIAMJ 42, (2000), 79-86.

40. A. Rababah, S. Manna, Iterative process for G2-multi degree reduction of Bèzier curves,
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