

Approximation by (p, q) -Lupaş Stancu Operators

Asif Khan, Vinita Sharma*

Department of Mathematics, Aligarh Muslim University, Aligarh-202002,
India.

E-mail: asifjnu07@gmail.com

E-mail: vinita.sha23@gmail.com

ABSTRACT. In this paper, (p, q) -Lupaş Bernstein Stancu operators are constructed. Statistical as well as other approximation properties of (p, q) -Lupaş Stancu operators are studied. Rate of statistical convergence by means of modulus of continuity and Lipschitz type maximal functions has been investigated.

Keywords: (p, q) -Integers, Lupaş (p, q) -Bernstein Stancu operators, Statistical approximation, Korovkin's type approximation.

2000 Mathematics subject classification: 65D17, 41A10, 41A25, 41A36.

1. INTRODUCTION AND PRELIMINARIES

In 1912, S.N. Bernstein [6] introduced his famous operators $B_n : C[0, 1] \rightarrow C[0, 1]$ defined for any $n \in \mathbb{N}$ and for any function $f \in C[0, 1]$

$$B_n(f; x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right), \quad x \in [0, 1]. \quad (1.1)$$

and named it Bernstein polynomials to provide a constructive proof of the Weierstrass theorem [20].

*Corresponding Authors

Further, based on q -integers, Lupaş [21] introduced the first q -Bernstein operators [6] and investigated its approximating and shape-preserving properties. Another q -analogue of the Bernstein polynomials is due to Phillips [38]. Since then several generalizations of well-known positive linear operators based on q -integers have been introduced and their approximation properties studied.

Recently, the applications of (p, q) -calculus (post quantum calculus) emerged as a new area in the field of approximation theory [20]. The development of post quantum calculus has led to the discovery of various generalizations of Bernstein polynomials involving (p, q) -integers. The aim of these generalizations is to provide appropriate and powerful tools to application areas such as numerical analysis, computer-aided geometric design [7] and solutions of differential equations.

Mursaleen *et al* [27] introduced the concept of post quantum calculus in approximation theory and constructed the (p, q) -analogue of Bernstein operators defined as follows for $0 < q < p \leq 1$:

$$B_{n,p,q}(f; x) = \frac{1}{p^{\frac{n(n-1)}{2}}} \sum_{k=0}^n \left[\begin{matrix} n \\ k \end{matrix} \right]_{p,q} p^{\frac{k(k-1)}{2}} x^k \prod_{s=0}^{n-k-1} (p^s - q^s x) f\left(\frac{[k]_{p,q}}{p^{k-n} [n]_{p,q}}\right), \quad x \in [0, 1]. \quad (1.2)$$

Note when $p = 1$, (p, q) -Bernstein Operators given by (1.2) turns out to be Phillips q -Bernstein Operators [38].

Also, we have

$$\begin{aligned} (1-x)_{p,q}^n &= \prod_{s=0}^{n-1} (p^s - q^s x) = (1-x)(p-qx)(p^2-q^2x)\dots(p^{n-1}-q^{n-1}x) \\ &= \sum_{k=0}^n (-1)^k p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} \left[\begin{matrix} n \\ k \end{matrix} \right]_{p,q} x^k. \end{aligned}$$

Further, they applied the concept of (p, q) -calculus in approximation theory and studied approximation properties based on (p, q) -integers for Bernstein-Stancu operators, (p, q) -analogue of Bernstein-Kantorovich, (p, q) -analogue of Bernstein-Shurer operators, (p, q) -analogue of Bleimann-Butzer-Hahn operators and (p, q) -analogue of Lorentz polynomials on a compact disk in [28, 31, 32, 33, 35].

On the other hand, Khalid and Lobiyal defined (p, q) -analogue of Lupaş Bernstein operators [17] as follows :

For any $p > 0$ and $q > 0$, the linear operators $L_{p,q}^n : C[0, 1] \rightarrow C[0, 1]$ as

$$L_{p,q}^n(f; x) = \sum_{k=0}^n \frac{f\left(\frac{p^{n-k} [k]_{p,q}}{[n]_{p,q}}\right) \left[\begin{matrix} n \\ k \end{matrix} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} x^k (1-x)^{n-k}}{\prod_{j=1}^n \{p^{j-1}(1-x) + q^{j-1}x\}}, \quad (1.3)$$

are (p, q) -analogue of Lupaş Bernstein operators.

Again when $p = 1$, Lupaş (p, q) -Bernstein operators turns out to be Lupaş q -Bernstein operators as given in [22, 37].

When $p = q = 1$, Lupaş (p, q) -Bernstein operators turns out to be classical Bernstein operators [6].

They studied two different techniques as de-Casteljau's algorithm and Korovkin's type approximation properties [17]: de-Casteljau's algorithm and related results of degree elevation reduction for Bézier curves and surfaces holds for all $p > 0$ and $q > 0$. However to study Korovkin's type approximation properties for Lupaş (p, q) -analogue of the Bernstein operators, $0 < q < p \leq 1$ is needed.

Based on Korovkin's type approximation, they proved that the sequence of (p, q) -analogue of Lupaş Bernstein operators $L_{p_n, q_n}^n(f, x)$ converges uniformly to $f(x) \in C[0, 1]$ if and only if $0 < q_n < p_n \leq 1$ such that $\lim_{n \rightarrow \infty} q_n = 1$, $\lim_{n \rightarrow \infty} p_n = 1$ and $\lim_{n \rightarrow \infty} q_n^n = 1$. On the other hand, for any $p > 0$ fixed and $p \neq 1$, the sequence $L_{p,q}^n(f, x)$ converges uniformly to $f(x) \in C[0, 1]$ if and only if $f(x) = ax + b$ for some $a, b \in \mathbb{R}$.

Furthermore, in comparison to q -Bézier curves and surfaces based on Lupaş q -Bernstein rational functions, their generalization gives more flexibility in controlling the shapes of curves and surfaces.

Some advantages of using the extra parameter p have been discussed in the field of approximations on compact disk [35] and in computer aided geometric design [17].

For more details related to approximation theory [20], one can refer [1, 2, 3, 5, 8, 9, 12, 13, 14, 15, 18, 19, 22, 23, 24, 34, 36, 39, 40, 42, 43, 44, 45, 46, 47, 48].

Let us recall certain notations of (p, q) -calculus.

For any $p > 0$ and $q > 0$, the (p, q) integers $[n]_{p,q}$ are defined by

$$[n]_{p,q} = p^{n-1} + p^{n-2}q + p^{n-3}q^2 + \dots + pq^{n-2} + q^{n-1} = \begin{cases} \frac{p^n - q^n}{p - q}, & \text{when } p \neq q \neq 1 \\ n p^{n-1}, & \text{when } p = q \neq 1 \\ [n]_q, & \text{when } p = 1 \\ n, & \text{when } p = q = 1 \end{cases}$$

where $[n]_q$ denotes the q -integers and $n = 0, 1, 2, \dots$.

The formula for (p, q) -binomial expansion is as follows:

$$(ax + by)_{p,q}^n := \sum_{k=0}^n p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} a^{n-k} b^k x^{n-k} y^k,$$

$$(x + y)_{p,q}^n = (x + y)(px + qy)(p^2x + q^2y) \cdots (p^{n-1}x + q^{n-1}y),$$

$$(1 - x)_{p,q}^n = (1 - x)(p - qx)(p^2 - q^2x) \cdots (p^{n-1} - q^{n-1}x),$$

where (p, q) -binomial coefficients are defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}! [n - k]_{p,q}!}.$$

Details on (p, q) -calculus can be found in [10, 11, 27].

Also, we have (p, q) -analogue of Euler's identity as:

$$(1 - x)_{p,q}^n = \prod_{s=0}^{n-1} (p^s - q^s x) = (1 - x)(p - qx)(p^2 - q^2x) \cdots (p^{n-1} - q^{n-1}x)$$

$$= \sum_{k=0}^n (-1)^k p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} x^k.$$

Again by some simple calculations and using the property of (p, q) -integers, we get (p, q) -analogue of Pascal's relation as follows:

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_{p,q} + p^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_{p,q} \quad (1.4)$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = p^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_{p,q} + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_{p,q}. \quad (1.5)$$

We recall some results from [17] for Lupas (p, q) -Bernstein operators, which reproduces linear and constant functions.

Some auxillary results:

(1) $L_{p,q}^n(1, \frac{u}{u+1}) = 1$

(2) $L_{p,q}^n(t, \frac{u}{u+1}) = \frac{u}{u+1}$

(3) $L_{p,q}^n(t^2, \frac{u}{u+1}) = \frac{u}{u+1} \frac{p^{n-1}}{[n]_{p,q}} + \frac{qu}{u+1} \left(\frac{qu}{p+qu}\right) \frac{[n-1]_{p,q}}{[n]_{p,q}}$

or equivalently for $x = \frac{u}{u+1}$

$$L_{p,q}^n(1, x) = 1, \quad (1.6)$$

$$L_{p,q}^n(t, x) = x, \quad (1.7)$$

$$L_{p,q}^n(t^2, x) = \frac{p^{n-1}x}{[n]_{p,q}} + \frac{q^2 x^2}{p(1-x) + qx} \frac{[n-1]_{p,q}}{[n]_{p,q}}. \quad (1.8)$$

2. CONSTRUCTION OF (p, q) -LUPAŞ STANCU OPERATORSIn this section, we introduce (p, q) -Lupaş Stancu operators as follows:For any $p > 0$ and $q > 0$, the linear operators $L_{p,q}^n : C[0, 1] \rightarrow C[0, 1]$

$$L_{n,p,q}^{\alpha,\beta}(f; x) = \sum_{k=0}^n f\left(\frac{p^{n-k} [k]_{p,q} + \alpha}{[n]_{p,q} + \beta}\right) b_{p,q}^{k,n}(t) \quad (2.1)$$

and $b_{p,q}^{k,n}(t)$ is given by

$$b_{p,q}^{k,n}(t) = \frac{\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} t^k (1-t)^{n-k}}{\prod_{j=1}^n \{p^{j-1}(1-t) + q^{j-1}t\}}, \quad (2.2)$$

where $0 < \alpha < \beta$.

We give some equalities for operators (2.1) in the following lemma.

Lemma 4.1. The following equalities are true:

(i) $L_{n,p,q}^{\alpha,\beta}(1; x) = 1$,

(ii) $L_{n,p,q}^{\alpha,\beta}(t; x) = \frac{[n]_{p,q}x + \alpha}{[n]_{p,q} + \beta}$,

(iii) $L_{n,p,q}^{\alpha,\beta}(t^2; x) = \frac{1}{([n]_{p,q} + \beta)^2} \frac{q^2 [n]_{p,q} [n-1]_{p,q} x^2}{p(1-x) + qx} + \frac{[n]_{p,q} (2\alpha + p^{n-1})}{([n]_{p,q} + \beta)^2} x + \frac{\alpha^2}{([n]_{p,q} + \beta)^2}$.

Proof. Proof of part (i) is obvious.

$$\begin{aligned} L_{n,p,q}^{\alpha,\beta}(t; x) &= \sum_{k=0}^n \left(\frac{p^{n-k} [k]_{p,q} + \alpha}{[n]_{p,q} + \beta} \right) b_{p,q}^{k,n}(t) \\ &= \frac{[n]_{p,q}}{[n]_{p,q} + [\beta]} L_{p,q}^n(t; x) + \frac{[\alpha]}{[n]_{p,q} + [\beta]} L_{p,q}^n(1; x). \end{aligned}$$

So from inequalities (1.6) and (1.7), we get the result.

Proof (iii)

$$\begin{aligned} L_{n,p,q}^{\alpha,\beta}(t^2; x) &= \sum_{k=0}^n \left(\frac{p^{n-k} [k]_{p,q} + \alpha}{[n]_{p,q} + \beta} \right) b_{p,q}^{k,n}(t) \\ &= \frac{1}{([n]_{p,q} + \beta)^2} \left[p^{2n-2k} [k]_{p,q}^2 b_{p,q}^{k,n}(t) \right. \\ &\quad \left. + 2\alpha p^{n-k} [k]_{p,q} b_{p,q}^{k,n}(t) + \alpha^2 b_{p,q}^{k,n}(t) \right] \\ &= \frac{1}{([n]_{p,q} + \beta)^2} \left[A + B + C \right]. \\ A &= p^{2n} \sum_{k=0}^n \frac{[k]^2}{p^{2k}} \frac{\left[\begin{matrix} n \\ k \end{matrix} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} t^k (1-t)^{n-k}}{\prod_{j=1}^n \{p^{j-1}(1-t) + q^{j-1}t\}} \\ A &= [n] p^{2n} \sum_{k=1}^n \frac{[k]}{p^{2k}} \frac{\left[\begin{matrix} n-1 \\ k-1 \end{matrix} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} u^k}{\prod_{j=1}^n \{p^{j-1} + q^{j-1}u\}}. \end{aligned}$$

On shifting the limits and on replacing k by $k+1$, we get

$$\begin{aligned} A &= [n] p^{2n} \sum_{k=1}^n \frac{[k+1]}{p^{2k+2}} \frac{\left[\begin{matrix} n-1 \\ k \end{matrix} \right]_{p,q} p^{\frac{(n-k-1)(n-k-2)}{2}} q^{\frac{k(k+1)}{2}} u^k}{\prod_{j=1}^{n-1} \{p^j + q^j u\}}, \\ &= [n] p^n \frac{u}{u+1} \sum_{k=0}^{n-1} \frac{[k+1]}{p^{k+2}} \frac{\left[\begin{matrix} n-1 \\ k \end{matrix} \right]_{p,q} p^{\frac{(n-k-1)(n-k-2)}{2}} q^{\frac{k(k+1)}{2}} \left(\frac{qu}{p}\right)^k}{\prod_{j=0}^{n-2} \{p^j + q^j \left(\frac{qu}{p}\right)\}}. \end{aligned}$$

Using $[k+1]_{p,q} = p^k + q[k]_{p,q}$, we get our desired result:

$$\begin{aligned} A &= [n]p^n \frac{u}{u+1} \sum_{k=0}^{n-1} \frac{[p^k + q[k]]}{p^{k+2}} \frac{\left[\begin{array}{c} n-1 \\ k \end{array} \right]_{p,q} p^{\frac{(n-k-1)(n-k-2)}{2}} q^{\frac{k(k+1)}{2}} (\frac{qu}{p})^k}{\prod_{j=0}^{n-2} \{p^j + q^j(\frac{qu}{p})\}}, \\ &= [n]_{p,q} p^{n-1} \frac{u}{u+1} + \frac{q^2 u^2 [n]_{p,q} [n-1]_{p,q}}{(u+1)(p+qu)}, \end{aligned}$$

equivalently

$$A = [n]_{p,q} p^{n-1} x + \frac{q^2 [n]_{p,q} [n-1]_{p,q} x^2}{(p(1-x) + qx)}.$$

Similarly

$$\begin{aligned} B &= 2\alpha p^n \sum_{k=0}^n \frac{[k]}{p^k} \frac{\left[\begin{array}{c} n \\ k \end{array} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} t^k (1-t)^{n-k}}{\prod_{j=1}^n \{p^{j-1}(1-t) + q^{j-1}t\}}, \\ &= 2\alpha [n]p^n \sum_{k=1}^n \frac{1}{p^k} \frac{\left[\begin{array}{c} n-1 \\ k-1 \end{array} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} u^k}{\prod_{j=1}^n \{p^{j-1} + q^{j-1}u\}}. \end{aligned}$$

After shifting the limits and on replacing k by $k+1$, we get

$$B = 2\alpha [n]p^n \frac{u}{u+1} \sum_{k=0}^{n-1} \frac{1}{p} \frac{\left[\begin{array}{c} n-1 \\ k \end{array} \right]_{p,q} p^{\frac{(n-k-1)(n-k-2)}{2}} q^{\frac{k(k-1)}{2}} (\frac{qu}{p})^k}{\prod_{j=0}^{n-2} \{p^j + q^j(\frac{qu}{p})\}},$$

which implies

$$B = 2\alpha [n]_{p,q} x.$$

Similarly

$$\begin{aligned} C &= \alpha^2 \sum_{k=0}^n \frac{\left[\begin{array}{c} n \\ k \end{array} \right]_{p,q} p^{\frac{(n-k)(n-k-1)}{2}} q^{\frac{k(k-1)}{2}} t^k (1-t)^{n-k}}{\prod_{j=1}^n \{p^{j-1}(1-t) + q^{j-1}t\}}, \\ &= \alpha^2. \end{aligned}$$

□

Theorem 2.1. Let $0 < q_n < p_n \leq 1$ such that $\lim_{n \rightarrow \infty} p_n = 1$, $\lim_{n \rightarrow \infty} q_n = 1$, $\lim_{n \rightarrow \infty} q_n^n = 1$ and for $f \in C[0, 1]$, we have $\lim_n |L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| = 0$.

Proof. Let us recall the following Korovkin's theorem see [20]. Let (T_n) be a sequence of positive linear operators from $C[a, b]$ into $C[a, b]$. Then $\lim_n \|T_n(f, x) - f(x)\|_{C[a,b]} = 0$, for all $f \in C[a, b]$ if and only if $\lim_n \|T_n(f_i, x) - f_i(x)\|_{C[a,b]} = 0$, for $i = 0, 1, 2$, where $f_0(t) = 1$, $f_1(t) = t$ and $f_2(t) = t^2$.

□

3. THE RATE OF CONVERGENCE

In this section, we compute the rates of convergence of the operators $L_{n,p,q}^{\alpha,\beta}(f; x)$ to the functions f by means of modulus of continuity, elements of Lipschitz class and peetre's K-functional.

Let $f \in C[0, 1]$. The modulus of continuity of f denoted by $\omega(f, \delta)$ is defined as:

$$\omega(f, \delta) = \sup_{y, x \in [0, 1], |y-x| < \delta} |f(y) - f(x)|.$$

where $w(f; \delta)$ satisfies the following conditions: for all $f \in C[0, 1]$,

$$\lim_{\delta \rightarrow 0} w(f; \delta) = 0. \quad (3.1)$$

and

$$|f(y) - f(x)| \leq w(f; \delta) \left(\frac{|y-x|}{\delta} + 1 \right). \quad (3.2)$$

Theorem 3.1. Let $0 < q < p \leq 1$, and $f \in C[0, 1]$, and $\delta > 0$, we have

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2\omega(f; \delta_n)$$

where

$$\begin{aligned} \delta_n = & \left[\left(\frac{q^2 [n]_{p,q} [n-1]_{p,q}}{([n]_{p,q} + \beta)^2 (p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) + \left(\frac{p^{n-1} [n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) \right. \\ & \left. + \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \right]^{\frac{1}{2}}. \end{aligned}$$

Proof. From lemma (4.1) we have

$$\begin{aligned} |L_{n,p,q}^{\alpha,\beta}(t-x)^2; x) &= \left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) x^2 \\ &\quad + \left(\frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) x + \frac{\alpha^2}{([n]_{p,q} + \beta)^2}. \end{aligned} \quad (3.3)$$

For $x \in [0, 1]$, we take

$$|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq w(f; \delta) \left\{ 1 + \frac{1}{\delta} (L_{n,p,q}^{\alpha,\beta}(t-x)^2 : x)^{\frac{1}{2}} \right\},$$

then we get

$$\begin{aligned} \|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} &\leq w(f; \delta) \left\{ 1 + \frac{1}{\delta} (L_{n,p,q}^{\alpha,\beta}(t-x)^2 : x)^{\frac{1}{2}} \right\} \\ &\leq w(f; \delta) \left\{ 1 + \frac{1}{\delta} \left(\left(\frac{1}{([n]_{p,q} + \beta)^2} \frac{q^2[n]_{p,q}[n-1]_{p,q}}{p(1-x) + qx} \right. \right. \right. \\ &\quad \left. \left. \left. - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) + \left(\frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) \right. \right. \\ &\quad \left. \left. \left. + \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \right) \right)^{\frac{1}{2}} \right\}. \end{aligned}$$

If we choose

$$\begin{aligned} \delta_n &= \left[\left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) \right. \\ &\quad \left. + \left(\frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) + \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \right]^{\frac{1}{2}}. \end{aligned}$$

Then we have

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2\omega(f; \delta_n).$$

So we have the desired result. \square

Now we compute the approximation order of operator $L_{n,p,q}^{\alpha,\beta}$ in term of the elements of the usual Lipschitz class.

Let $f \in C[0, 1]$ and $0 < \rho \leq 1$. We recall that f belongs to $Lip_M(\rho)$ if the inequality

$$|f(x) - f(y)| \leq M|x - y|^\rho; \text{ for all } x, y \in [0, 1] \quad (3.4)$$

holds.

Theorem 3.2. *For all $f \in Lip_M(\rho)$*

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq M\delta_n^\rho$$

where

$$\begin{aligned} \delta_n = & \left[\left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) \right. \\ & \left. + \left(\frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) + \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \right]^{\frac{1}{2}} \end{aligned}$$

and M is a positive constant.

Proof. Let $f \in Lip_M(\rho)$ and $0 < \rho \leq 1$. by (3.4) and linearity and monotonicity of $L_{n,p,q}^{\alpha,\beta}$ then we have

$$\begin{aligned} |L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| & \leq L_{n,p,q}^{\alpha,\beta}(|f(t) - f(x)|; x) \\ & \leq L_{n,p,q}^{\alpha,\beta}(|t - x|^\rho; x). \end{aligned}$$

Applying the Holder inequality with $m = \frac{2}{\rho}$ and $n = \frac{2}{2-\rho}$, we get

$$|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq (L_{n,p,q}^{\alpha,\beta}((t-x)^2; x))^{\frac{\rho}{2}}. \quad (3.5)$$

if we choose $\delta = \delta_n$ as above, then proof is completed.

Finally, we will study the rate of convergence of the positive linear operators $L_{n,p,q}^{\alpha,\beta}$ by means of the Peetre's K-functionals.

$C^2[0, 1]$: The space of those functions f for which $f, f', f'' \in C[0, 1]$. we recall the following norm in the space $C^2[0, 1]$:

$$\|f\|_{C^2[0,1]} = \|f\|_{C[0,1]} + \|f'\|_{C[0,1]} + \|f''\|_{C[0,1]}.$$

We consider the following Peetre's K-functional

$$K(f, \delta) := \inf_{g \in C^2[0,1]} \left\{ \|f - g\|_{C[0,1]} + \delta \|g\|_{C^2[0,1]} \right\}.$$

□

Theorem 3.3. Let $f \in C[0, 1]$. Then we have

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2K(f; \delta_n)$$

Where $K(f; \delta_n)$ is Peetre's functional and

$$\begin{aligned} \delta_n = & \frac{1}{4} \left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) \\ & + \frac{1}{4} \left(\frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) + \frac{1}{4} \frac{\alpha^2}{([n]_{p,q} + \beta)^2} + \frac{1}{2} \frac{[\alpha] + [\beta]}{[n]_{p,q} + [\beta]}. \end{aligned}$$

Proof. Let $g \in C^2[0, 1]$. If we use the Taylor's expansion of the function g at $s = x$, we have

$$g(s) = g(x) + (s-x)g'(x) + \frac{(s-x)^2}{2}g''(x).$$

Hence we get

$$\begin{aligned} \|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} & \leq \|L_{n,p,q}^{\alpha,\beta}((s-x); x)\|_{C[0,1]} \|g(x)\|_{C^2[0,1]} \\ & + \frac{1}{2} \|L_{n,p,q}^{\alpha,\beta}((s-x)^2; x)\|_{C[0,1]} \|g(x)\|_{C^2[0,1]}. \end{aligned} \quad (3.6)$$

From the lemma (2.1) we have

$$\|L_{n,p,q}^{\alpha,\beta}((s-x); x)\|_{C[0,1]} \leq \frac{[\alpha] + [\beta]}{[n]_{p,q} + [\beta]}. \quad (3.7)$$

So if we use (3.3) and (3.7) in (3.6), then we get

$$\begin{aligned} \|L_{n,p,q}^{\alpha,\beta}(g; x) - g(x)\|_{C[0,1]} & \leq \left[\frac{1}{2} \left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) \right. \\ & + \left(\frac{1}{2} \frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) + \frac{1}{2} \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \quad (3.8) \\ & \left. + \frac{[\alpha] + [\beta]}{[n]_{p,q} + [\beta]} \right] \|g(x)\|_{C[0,1]}. \end{aligned} \quad (3.9)$$

On the other hand, we can write

$$\begin{aligned} \|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\| &\leq \|L_{n,p,q}^{\alpha,\beta}(f - g; x)\| + \|L_{n,p,q}^{\alpha,\beta}(g; x) - g(x)\| \\ &\quad + |f(x) - g(x)|. \end{aligned}$$

If we take the maximum on $[0, 1]$, we have

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2\|f - g\|_{C[0,1]} + \|L_{n,p,q}^{\alpha,\beta}(g; x) - g(x)\|_{C[0,1]}. \quad (3.10)$$

If we consider (3.8) in (3.10), we obtain

$$\begin{aligned} \|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} &\leq 2\|f - g\|_{C[0,1]} + \left[\frac{1}{4} \left(\frac{q[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} \right. \right. \\ &\quad \left. \left. - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) + \left(\frac{1}{4} \frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) \right. \\ &\quad \left. + \frac{1}{4} \frac{\alpha^2}{([n]_{p,q} + \beta)^2} + \frac{1}{2} \frac{[\alpha] + [\beta]}{[n]_{p,q} + [\beta]} \right] \|g(x)\|_{C^2[0,1]}. \end{aligned}$$

If we choose

$$\begin{aligned} \delta_n &= \frac{1}{4} \left(\frac{q^2[n]_{p,q}[n-1]_{p,q}}{([n]_{p,q} + \beta)^2(p(1-x) + qx)} - \frac{[n]_{p,q} - \beta}{[n]_{p,q} + \beta} \right) \\ &\quad + \left(\frac{1}{4} \frac{p^{n-1}[n]_{p,q} - 2\alpha\beta}{([n]_{p,q} + \beta)^2} \right) + \frac{1}{4} \frac{\alpha^2}{([n]_{p,q} + \beta)^2} + \frac{1}{2} \frac{[\alpha] + [\beta]}{[n]_{p,q} + [\beta]}, \end{aligned}$$

then we get

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2 \left\{ \|f - g\|_{C[0,1]} + \delta_n \|g(x)\|_{C^2[0,1]} \right\}. \quad (3.11)$$

Finally, one can observe that if we take the infimum of both side of above inequality for the function $g \in C^2[0, 1]$, we can find

$$\|L_{n,p,q}^{\alpha,\beta}(f; x) - f(x)\|_{C[0,1]} \leq 2K(f, \delta_n).$$

□

4. THE RATES OF STATISTICAL CONVERGENCE

At this point, let us recall the concept of statistical convergence. The statistical convergence which was introduced by Fast [41] in 1951, is an important research area in approximation theory. In [41], Gadjiev and Orhan used the concept of statistical convergence in approximation theory. They proved a Bohman-Korovkin type theorem for statistical convergence.

Recently, statistical approximation properties of many operators are investigated in [4, 25, 26, 29, 30].

A sequence $x = (x_k)$ is said to be statistically convergent to a number L if for every $\epsilon > 0$,

$$\delta\{K \in \mathbf{N} : |x_k - L| \geq \epsilon\} = 0,$$

where $\delta(K)$ is the natural density of the set $K \subseteq \mathbf{N}$.

The density of subset $K \subseteq N$ is defined by

$$\delta(K) := \lim_n \frac{1}{n} \{\text{the number } k \leq n : k \in K\}$$

whenever the limit exists.

For instance, $\delta(\mathbf{N}) = 1$, $\delta\{2K : k \in \mathbf{N}\} = \frac{1}{2}$ and $\delta\{k^2 : K \in \mathbf{N}\} = 0$.

To emphasize the importance of the statistical convergence, we have an example: The sequence

$$X_k = \begin{cases} L_1; & \text{if } k = m^2, \\ L_2; & \text{if } k \neq m^2. \end{cases} \quad \text{where } m \in \mathbf{N} \quad (4.1)$$

is statistically convergent to L_2 but not convergent in ordinary sense when $L_1 \neq L_2$. We note that any convergent sequence is statistically convergent but not conversely.

Now we consider sequences $q = q_n$ and $p = p_n$ such that:

$$st - \lim_n q_n = 1, \quad st - \lim_n p_n = 1, \quad \text{and} \quad st - \lim_n q_n^n = 1. \quad (4.2)$$

Gadjiev and Orhan [41] gave the following theorem for linear positive operators which is about statistically Korovkin type theorem. Now, we recall this theorem.

Theorem 4.1. *If A_n be the sequence of linear positive operators from $C[a, b]$ to $C[a, b]$ satisfies the conditions*

$$st - \lim_n \|A_n((t^\nu; x)) - (x)^\nu\|_C[0, 1] = 0 \text{ for } \nu = 0, 1, 2.$$

then for any function $f \in C[a, b]$,

$$st - \lim_n \|A_n(f; \cdot) - f\|_C[a, b] = 0.$$

Now we will discuss the rates of statistical convergence of $L_{n,p,q}^{\alpha,\beta}$ operators.

Remark 4.2. *For $q \in (0, 1)$ and $p \in (q, 1]$, it is obvious that*

$$\lim_{n \rightarrow \infty} [n]_{p,q} = \begin{cases} 0, & \text{when } p, q \in (0, 1) \\ \frac{1}{1-q}, & \text{when } p = 1 \text{ and } q \in (0, 1). \end{cases}$$

In order to reach to convergence results of the operator $L_{p,q}^n(f; x)$, we take a sequence $q_n \in (0, 1)$ and $p_n \in (q_n, 1]$ such that $\lim_{n \rightarrow \infty} p_n = 1$, $\lim_{n \rightarrow \infty} q_n = 1$. So we get $\lim_{n \rightarrow \infty} [n]_{p_n, q_n} = \infty$.

Theorem 4.3. *Let $L_{n,p,q}^{\alpha,\beta}$ be the sequence of operators and the sequences $p = p_n$ and $q = q_n$ satisfies Remark 4.2 then for any function $f \in C[0, 1]$*

$$st - \lim_n \|L_{n,p_n,q_n}^{\alpha,\beta}(f, \cdot) - f\| = 0. \quad (4.3)$$

Proof. Clearly for $\nu = 0$,

$$L_{n,p_n,q_n}^{\alpha,\beta}(1, x) = 1,$$

which implies

$$st - \lim_n \|L_{n,p_n,q_n}^{\alpha,\beta}(1; x) - 1\| = 0.$$

For $\nu = 1$

$$\begin{aligned} \|L_{n,p_n,q_n}^{\alpha,\beta}(t; x) - x\| &\leq \left| \frac{[n]_{p_n,q_n}}{[n]_{p_n,q_n} + \beta} x + \frac{\alpha}{[n]_{p_n,q_n} + \beta} - x \right| \\ &= \left| \left(\frac{[n]_{p_n,q_n}}{[n]_{p_n,q_n} + \beta} - 1 \right) x + \frac{\alpha}{[n]_{p_n,q_n} + \beta} \right| \\ &\leq \left| \frac{[n]_{p_n,q_n}}{[n]_{p_n,q_n} + \beta} - 1 \right| + \left| \frac{\alpha}{[n]_{p_n,q_n} + \beta} \right|. \end{aligned}$$

For a given $\epsilon > 0$, let us define the following sets.

$$\begin{aligned} U &= \{n : \|L_{n,p_n,q_n}^{\alpha,\beta}(t; x) - x\| \geq \epsilon\} \\ U' &= \left\{n : 1 - \frac{[n]_{p_n,q_n}}{[n]_{p_n,q_n} + \beta} \geq \epsilon\right\} \\ U'' &= \left\{n : \frac{\alpha}{[n]_{p_n,q_n} + \beta} \geq \epsilon\right\}. \end{aligned}$$

It is obvious that $U \subseteq U'' \cup U'$,

So using

$$\delta\{k \leq n : 1 - \frac{[n]_{p_n,q_n}}{[n]_{p_n,q_n} + \beta} \geq \epsilon\},$$

then we get

$$st - \lim_n \|L_{n,p_n,q_n}^{\alpha,\beta}(t; x) - x\| = 0. \quad (4.4)$$

Lastly for $\nu = 2$, we have

$$\begin{aligned} \|L_{n,p_n,q_n}^{\alpha,\beta}(t^2 : x) - x^2\| &\leq \left| \frac{q^2[n]_{p_n,q_n}[n-1]_{p_n,q_n}}{p(1-x) + qx} \frac{1}{([n]_{p_n,q_n} + \beta)^2} - 1 \right| \\ &\quad + \left| \frac{[n]_{p_n,q_n}(2\alpha + p^{n-1})^2}{[n]_{p_n,q_n} + \beta} x \right| + \left| \frac{\alpha^2}{([n]_{p_n,q_n} + \beta)^2} \right|. \end{aligned}$$

If we choose

$$\begin{aligned} \alpha_n &= \frac{q^2[n]_{p_n,q_n}[n-1]_{p_n,q_n}}{p(1-x) + qx} \frac{1}{([n]_{p_n,q_n} + \beta)^2} - 1 \\ \beta_n &= \frac{[n]_{p_n,q_n}(2\alpha + p^{n-1})^2}{[n]_{p_n,q_n} + \beta} \\ \gamma_n &= \frac{\alpha^2}{([n]_{p_n,q_n} + \beta)^2}. \end{aligned}$$

Then

$$st - \lim_n \alpha_n = st - \lim_n \beta_n = st - \lim_n \gamma_n = 0.$$

Now given $\epsilon > 0$, we define the following four sets:

$$\begin{aligned} U &= \|L_{n,p_n,q_n}^{\alpha,\beta}(t^2 : x) - x^2\| \geq \epsilon, \\ U_1 &= \left\{n : \alpha_n \geq \frac{\epsilon}{3}\right\}, \\ U_2 &= \left\{n : \beta_n \geq \frac{\epsilon}{3}\right\}, \end{aligned}$$

$$U_3 = \{n : \gamma_n \geq \frac{\epsilon}{3}\}.$$

It is obvious that $U \subseteq U_1 \cup U_2 \cup U_3$. Thus we obtain

$$\begin{aligned} & \delta\{K \leq n : \|L_{n,p,q}^{\alpha,\beta}(t^2 : x) - x^2\| \geq \epsilon\} \\ & \leq \delta\{K \leq n : \alpha_n \geq \frac{\epsilon}{3}\} + \delta\{K \leq n : \beta_n \geq \frac{\epsilon}{3}\} + \delta\{K \leq n : \gamma_n \geq \frac{\epsilon}{3}\}. \end{aligned}$$

So the right hand side of the inequalities is zero.

Then

$$st - \lim_n \|L_{n,p_n,q_n}^{\alpha,\beta}(t; x) - x\| = 0$$

holds and thus the proof is completed. \square

ACKNOWLEDGEMENT

The authors are thankful to the learned referees for their valuable comments and suggestions leading to improvement of the paper.

REFERENCES

1. T. Acar, (p, q) -Generalization of Szsz-Mirakyan operators, *Mathematical Methods in the Applied Sciences*, DOI: 10.1002/mma.3721.
2. T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q) -Baskakov operators, *Journal of Inequalities and Applications*, **98**(2016).
3. A. Aral, V. Gupta, R. P. Agarwal, *Applications of q -Calculus in Operator Theory*, Springer, New York, 2013.
4. O. H. H. Edely, S. A. Mohiuddine, Abdullah K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, *Appl. Math. Lett.*, **23**(11), (2010), 1382-1387.
5. M. R. Eslahchi, S. Amani, The best uniform polynomial approximation of two classes of rational functions, *Iranian Journal of Mathematical Sciences and Informatics* Vol. 7, No. 2 (2012), pp 93-102.
6. S. N. Bernstein, constructive proof of Weierstrass approximation theorem, *Comm. Kharkov Math. Soc.* (1912)
7. P.E. Bézier, *Numerical Control-Mathematics and applications*, John Wiley and Sons, London, 1972.
8. L.-W. Han, Y. Chu, Zh.-Y. Qiu, Generalized Bézier curves and surfaces based on Lupaş q -analogue of Bernstein operator, *Jour. Comput. Appl. Math.* **261**, (2014), 352-363.
9. Q.-B. Cai, G. Zhou, On (p, q) -analogue of kantorovich type Bernstein-stancu-schurer operators, *Appl. Math. Comput.*, **276**, (2016), 1220.
10. M. Norbert Hounkonnou, Joseph Désiré Bukweli Kyemba, $\mathcal{R}(p, q)$ -calculus: differentiation and integration, *SUT Journal of Mathematics*, **49**(2), (2013), 145-167.

11. R. Jagannathan, K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers and associated generalized hypergeometric series, *Proceedings of the International Conference on Number Theory and Mathematical Physics*, (2005), 20-21.
12. U. Kadak, On weighted statistical convergence based on (p, q) -integers and related approximation theorems for functions of two variables, *Journal of Mathematical Analysis and Applications*, (2016), DOI: 10.1016/j.jmaa.2016.05.062.
13. U. Kadak, Naim L. Braha, H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, *Appl. Math. Comput.*, **302**, (2017), 80-96.
14. U. Kadak, Generalized weighted invariant mean based on fractional difference operator with applications to approximation theorems for functions of two variables, *Results in Mathematics*, (2016), doi:10.1007/s00025-016-0634-8.
15. U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q) -Gamma function and its applications to approximation theorems, *Journal of Mathematical Analysis and Applications*, **448**(2), (2017), 1633-1650.
16. Kh. Khan, D. K. Lobiyal, A. Kilicman, A de casteljau algorithm for bernstein type polynomials based on (p, q) -integers, *Appl. Appl. Math.*, **13**(2) (2018).
17. Kh. Khan, D.K. Lobiyal, Bézier curves based on lupaş (p, q) -analogue of Bernstein functions in CAGD, *Jour. Comput. Appl. Math.*, **317**, (2017), 458-477.
18. Kh. Khan, D.K. Lobiyal, Bézier curves and surfaces based on modified Bernstein polynomials, *Azerb. j. Math.*, **9**(1), 2019.
19. V. Kac, P. Cheung, *Quantum Calculus*, in: Universitext Series, vol.IX, Springer-Verlag, (2002).
20. P. P. Korovkin, Linear operators and approximation theory, *Hindustan Publishing Corporation*, Delhi, 1960.
21. A. Lupaş, A q -analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, *University of Cluj-Napoca*, **9**(1987), 85-92.
22. N. I. Mahmudov, P. Sabancigil, Some approximation properties of Lupaş q -analogue of Bernstein operators, *arXiv:1012.4245v1* [math.FA] 20 Dec 2010.
23. V. N. Mishra, S. Pandey, On (p, q) Baskakov-Durrmeyer-Stancu Operators, *Advances in Applied Clifford Algebras*, (2016), DOI: 10.1007/s00006-016-0738-y.
24. V. N. Mishra, S. Pandey; On Chlodowsky variant of (p, q) Kantorovich-Stancu-Schurer operators, *International Journal of Analysis and Applications*, **11**(1), (2016), 28-39.
25. N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin mean. *Appl. Math. Comput.*, **228**, (2014), 162-169.
26. C. Belen, S. A. Mohiuddine: Generalized weighted statistical convergence and application. *Appl. Math. Comput.*, **219**(18), (2013), 9821-9826 .
27. M. Mursaleen, K. J. Ansari, A. Khan, On (p, q) -analogue of Bernstein Operators, *Appl. Math. Comput.*, **266**(2015) 874-882, [Erratum: 278 (2016) 70-71].
28. M. Mursaleen, Md. Nasiruzzaman, A. Nurgali, Some approximation results on Bernstein-Schurer operators defined by (p, q) -integers, *Journal of Inequalities and Applications*, **249**, (2015), DOI 10.1186/s13660-015-0767-4.
29. M. Mursaleen, A. Khan, Statistical Approximation Properties of Modified q-Stancu-Beta Operators, *Bull. Malays. Math. Sci. Soc.*, (2) **36**(3) (2013), 683690.
30. M. Mursaleen, F. Khan, A. Khan, Statistical approximation for new positive linear operators of Lagrange type, *Appl. Math. Comput.*, **232**(2014) 548558.

31. M. Mursaleen, K. J. Ansari, A. Khan, Some Approximation Results by (p, q) -analogue of Bernstein-Stancu Operators, *Appl. Math. Comput.*, **264**, (2015), 392-402.
32. M. Mursaleen, K. J. Ansari, A. Khan, Some approximation results for Bernstein-Kantorovich operators based on (p, q) -calculus, *U.P.B. Sci. Bull., Series A*, **78**(4), (2016).
33. M. Mursaleen, Md. Nasiruzzaman, A. Khan, K. J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by (p, q) -integers, *Filomat*, **30**(3), (2016), 639-648, DOI 10.2298/FIL1603639M.
34. M. Mursaleen, A. Khan, Generalized q -Bernstein-Schurer Operators and Some Approximation Theorems, *Journal of Function Spaces and Applications* **2013**, Article ID 719834, 7 pages <http://dx.doi.org/10.1155/2013/719834>
35. M. Mursaleen, F. Khan, A. Khan, Approximation by (p, q) -Lorentz polynomials on a compact disk, *Complex Anal. Oper. Theory*, DOI: 10.1007/s11785-016-0553-4.
36. M. Mursaleen, Md. Nasiruzzaman, F. Khan, A. Khan, On (p, q) -analogue of divided differences and Bernstein operators, *Journal of Nonlinear Functional Analysis*, **2017**, (2017), Article ID 25, pp. 1-13.
37. S. Ostrovska, On the Lupaş q -analogue of the bernstein operator, *Rocky mountain journal of mathematics*, **36**(5), 2006.
38. G. M. Phillips, Bernstein polynomials based on the q -integers, The heritage of P.L.Chebyshev, *Ann. Numer. Math.*, **4**, (1997), 511-518.
39. G. M. Phillips, A generalization of the Bernstein polynomials based on the q -integers *ANZIAMJ* **42**, (2000), 79-86.
40. A. Rababah, S. Manna, Iterative process for G2-multi degree reduction of Bézier curves, *Appl. Math. Comput.*, 217 (2011) 8126-8133.
41. A. D. Gadjev, C. Orhan, Some approximation theorems by statistical convergence, *Rocky Mountain J.math.*, **32**, (2002) 129-138.
42. A. Wafi, N. Rao, Bivariate-Schurer-Stancu operators based on (p, q) -integers, *Filomat*, **32**(4), (2018), 1251-1258.
43. A. Wafi, N. Rao, (p, q) -Bivariate-Bernstein-Chlowdosky Operators, *Filomat*, **32**(2), (2018), 369378.
44. A. Wafi, N. Rao, Approximation properties of (p, q) -variant of Stancu-Schurer, *Boletim da Sociedade Paranaense de Matematica* **37**(4), (2017).
45. A. Wafi, N. Rao, A generalization of Szasz-type operators which preserves constant and quadratic test functions, *cogent mathematics*, **3**(1), 2016, 1227023.
46. A. Wafi, N. Rao Modified Szasz operators involving Charlier polynomials based on two parameters, *Thai J. of Maths.*, 2016.
47. A. Wafi, N. Rao Approximation properties by generalized Baskakov Kantorovich Stancu type operators, *Appl. Maths Inf. Sci. Lett.*, **4**(3) (2016), PP:111-118.
48. A. Wafi, N. Rao, Stancu-variant of generalized Baskakov operators, *Filomat*, **31**(9), (2017).