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Abstract. In the main this paper introduces the concept of chromatic

harmonic polynomials denoted, Hχ(G, x) and chromatic harmonic indices

denoted, Hχ(G) of a graph G. The new concept is then applied to find-

ing explicit formula for the minimum (maximum) chromatic harmonic

polynomials and the minimum (maximum) chromatic harmonic index of

certain graphs. It is also applied to split graphs and certain derivative

split graphs.
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1. Introduction

For general notation and concepts in graphs and digraphs see [1] [7]. Unless

mentioned otherwise all graphs are simple, connected and undirected graphs.

In this article a graph G will have order n ≥ 2 with vertex set V (G) =

{v1, v2, v3, . . . , vn} and size p ≥ 1 with edge set E(G) = {e1, e2, e3, . . . , ep},
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denoted as ν(G) = n and ε(G) = p. An edge ei = vivj means that the vertices

vi, vj are adjacent. A multivariate polynomial over a field whose Laplacian is

zero is termed as Harmonic polynomial. They form a vector subspace of the

vector space of polynomials over the field.

In [8] Zhong introduced the harmonic index for graphs. Harmonic index is

one of the most important indices in chemical and mathematical fields. It is a

variant of the Randic index which is the most successful molecular descriptor

in structure-property and structure activity relationship studies. Very recently

in [2], Iranmanesh et. al introduced the concept of the harmonic polynomial of

a graph G as

Definition 1.1. [2] H(G, x) =
∑

uv∈E(G)

2xdG(u)+dG(v)−1, where∫ 1

0
H(G, x) = H(G).

Researchers are interested in considering the relationship between the harmonic

index and the eigenvalues of graphs, determining the minimum and maximum

values of the harmonic index and, estimating the bounds for H(G).

In [8] the authors established explicit formulas for the harmonic polynomial of

several classes of graphs.

It is observed that most structural indices of kind, are defined in terms of the

vertex degree in G. The variation we will consider is that of the colour of a

vertex when applying what is known to be a minimum parameter chromatic

colouring to G [4].

2. Chromatic Harmonic Polynomial and Chromatic Harmonic

Index

One may recall that if C = {c1, c2, c3, . . . , c`} is a set of distinct colours,

a proper vertex colouring of a graph G denoted ϕ : V (G) 7→ C is a vertex

colouring such that no two distinct adjacent vertices have the same colour.

The cardinality of a minimum set of colours which is a proper vertex colouring

of G is called the chromatic number of G and is denoted χ(G). When a vertex

colouring is considered with colours of minimum subscripts the colouring is

called a minimum parameter colouring. Unless stated otherwise we consider

minimum parameter colour sets throughout this paper. The number of times a

colour ci is allocated to vertices of a graph G is denoted by θ(ci) and ϕ : vi 7→ cj
is abbreviated, c(vi) = cj . Furthermore, we define an important derivative in-

dex that is, if c(vi) = cj then ι(vi) = j.

Rainbow Neighborhood Convention:[5] Unless mentioned otherwise we

shall consider the colours C = {c1, c2, c3, . . . , c`} and always colour vertices
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with maximum c1, followed by maximum c2 among the remaining uncoloured

vertices, . . . , followed by maximum c` for the final remaining uncoloured ver-

tices.

Note that the Rainbow Neighborhhood Convention ensures a minimum valued

chromatic harmonic polynomial and therefore a minimum chromatic harmonic

index. The inverse to the convention ensures the maximum valued chromatic

harmonic polynomial and the maximum chromatic harmonic index. The inverse

colouring requires the mapping cj 7→ c`−(j−1). Corresponding to the inverse

colouring we define the inverse index ι′(vi) = ` − (j − 1) if c(vi) = cj . We

shall colour a graph in accordance with the Rainbow Neighborhood Convention

[5]. We are now ready to introduce the definitions of the chromatic harmonic

polynomials and the chromatic harmonic indices.

Definition 2.1. For a graph G and the minimum parameter colour set C =

{c1, c2, c3, . . . , cχ(G)} the minimum (or maximum) chromatic harmonic polyno-

mial (CHP− or CHP+) and the minimum (or maximum) chromatic harmonic

index (CHI− or CHI+) are defined as

Hχ−(G, x) =
∑

vivj∈E(G)

2xι(vi)+ι(vj), and Hχ−(G) =
∫ 1

0
Hχ−(G, x)

and,

Hχ+

(G, x) =
∑

vivj∈E(G)

2xι
′(vi)+ι

′(vj), and Hχ+

(G) =
∫ 1

0
Hχ+

(G, x)

Proposition 2.2. For a complete graph Kn, n ≥ 2,

(1) If n is even, then

Hχ−(Kn, x) = Hχ+

(Kn, x) = 2 · [x2n−1 +x2n−2 +2(x2n−3 +x2n−4)+3(x2n−5 +

x2n−6) + · · ·+ n
2 (xn+2 + xn+1) +

(n2 − 1)(xn + xn−1) + (n2 − 2)(xn−2 + xn−3) + · · ·+ 2(x6 + x5) + x4 + x3],

(2) If n is odd, then

Hχ−(Kn, x) = Hχ+

(Kn, x) = 2 · [x2n−1 +x2n−2 +2(x2n−3 +x2n−4)+3(x2n−5 +

x2n−6) + · · ·+ bn2 c(x
n+3 + xn+2 + xn+1) +

(bn2 c − 1)(xn + xn−1) + (bn2 c − 2)(xn−2 + xn−3) + · · ·+ 2(x6 + x5) + x4 + x3].

Proof. For a complete graph Kn, n ≥ 2 we have that θ(ci) = 1, ∀ci ∈
{c1, c2, c3, . . . , cn}. It is known that for the integers a < b there exist exactly

t = (b − a) − 1 integers which all hence, anyone say x, satisfies a < x < b. It

implies that there are b t2c pairs of such inbetween integers with sum equal to

a + b. Also, for t even we have that b t2c = b t+1
2 c. Clearly as a result of com-

pleteness the principle of symmetry in summation applies and both the results

follow from Definition 2.1 and through immediate induction. �
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Proposition 2.3. For a cycle Cn, n ≥ 3

(1) When n is even,

Hχ−(Cn, x) = Hχ+

(Cn, x) = 2nx3, and Hχ−(Cn) = Hχ+

(Cn) = n
2 ,

(2)When n is odd,

Hχ−(Cn, x) = 2(n− 2)x3 + 2x4 + 2x5, Hχ+

(Cn, x) = 2(n− 2)x5 + 2x4 + 2x3,

and

Hχ−(Cn) = n
2 −

4
15 , H

χ+

(Cn) = n−2
3 + 9

10 .

Proof. (1) For n is even, Cn is bipartite hence, the chromatic number equals

2. Further, because |E(Cn)| = n the results follow easily.

(2) For odd n, the chromatic number of Cn , χ(Cn) = 3. For minimum colour

sums for the edges the minimum parameter colour set {c1, c2, c3}, allows exactly

one vertex say, vn with colour c3. It follows that vn is adjacent to vertices with

colours c1, c2 respectively. Therefore the colour sum terms 2x4 and 2x5 follow.

For all the other n− 2 edges the colour sum term 2x3 applies.

For maximum colour sums for the edges the colour rotation mapping ci 7→
cχ−(i−1) applies and the result follows along the same reasoning. �

Proposition 2.4 discuss Hχ− and Hχ+

of the certain classes of graphs such as

Πn, Km,n, Sn = K1,n−1, Pn, and Qn.

Proposition 2.4.

1. For a prism Πn, formed by the two cycle Cn, n ≥ 3 and n is odd,

Hχ−(Πn, x) = 6(n− 2)x3 + 6x4 + 6x5= 3n
2 −

4
5 and,

Hχ+

(Πn, x) = 6(n− 2)x5 + 6x4 + 6x3 = n+ 7
10 , and

For n is even,

Hχ−(Πn, x) = Hχ+

(Πn, x) = 6nx3.

2. For complete bipartite graph Km,n, where m,n ≥ 2,

Hχ−(Km,n, x) = Hχ+

(Km,n, x) = 2mnx3,

Hχ−(Km,n) = Hχ+

(Km,n) = mn
2 .

3. For n ≥ 3, and Sn = K1,n−1,

Hχ−(Sn, x) = Hχ+

(Sn, x) = 2(n− 1)x3,

Hχ−(Sn) = Hχ+

(Sn) = n−1
2 .
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4. For Path Pn, n ≥ 3,

Hχ−(Pn, x) = Hχ+

(Pn, x) = 2(n− 1)x3

Hχ−(Pn) = Hχ+

(Pn) = n−1
2 .

5. For Qn = K2 ×Qn−1, n ≥ 1,

Hχ−(Qn, x) = Hχ+

(Qn, x) = n2nx3 and Hχ−(Qn) = Hχ+

(Qn) =

n2n−2.

Proof. Consider the prism formed by the two cycle Cn, n ≥ 3 and n is odd. La-

bel the vertices of the respective cycles as v1, v2, v3, . . . , vn and u1, u2, u3, . . . , un
such that we have the edges, viui, 1 ≤ i ≤ n. Colour the vertices as c(v1) =

c1, c(v2) = c2, c(v3) = c1, · · · , c(vn−1) = c2, c(vn) = c3 and c(un) = c1, c(u1) =

2, c(u2) = c1, · · · , c(un−1) = c3. Clearly, this vertex colouring ensures minimum

colour sums for all edges and the result follows. For maximum colour sums for

the edges the colour rotation mapping ci 7→ cχ−(i−1) applies and the result fol-

lows along the same reasoning. Since all graphs Km,n, Sn = K1,n−1, Pn, and

Qn are bipartite, the respective chromatic number equals 2. Further, because

|E(Cn)| = n, |E(Πn)| = 3n, |E(Km,n)| = mn, |E(Sn)| = n− 1, |E(Pn)| = n− 1

and |E(Qn)| = n2(n−1), one may easily check that the results follows. �

Corollary 2.5. Any graph G of size ε(G) = p and χ(G) = 2, has Hχ−(G, x) =

Hχ+

(G, x) = 2px3 and Hχ−(G) = Hχ+

(G) = p
2 .

Proof. Clearly each edge e ∈ E(G) is incident with vertices coloured c1 and c2,

respectively. Hence, the result. �

A wide variety of remarkable graphs have chromatic number equal to 2. In-

voking Corollary 2.5 to some important 2-chromatic graphs are tabled below.

Table 1.

Graph G ν(G) ε(G) Degree regularity Hχ
−

(G, x) = Hχ
+

(G, x) Hχ
−

(G) = Hχ
−

(G)

Iofinova-Ivanov 110 165 3 330x3 165
2

Balaban 10-cage 70 105 3 210x3 105
2

Cubicle 8 12 3 24x3 6

Dyck 32 48 3 96x3 24

Ellingham-Horton 54(78) 81(167) 3 162x3(334x3) 81
2

( 167
2

)

F26A 26 39 3 78x3 39
2

Folkman 20 40 4 80x3 20

Foster 90 135 3 270x3 135
2

Franklin 12 18 3 38x3 9

Gray 54 81 3 162x3 81
2

Harries 70 105 3 210x3 105
2

Heawood 14 21 3 42x3 21
2

Hoffman 16 32 4 64x3 16

Horton 96 144 3 288x3 72

Ljubljana 112 168 3 236x3 84

Naura 24 36 3 72x3 18

Pappus 18 27 3 54x3 27
2

Tutte-Coxeter 30 45 3 90x3 45
2
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2.1. Application in mathematical chemistry. Figure 1 depicts the molec-

ular structure of TUC4C8[m,n] carbon nanotubes together with the graphi-

cal representation where vertices represent carbon atoms and edges represent

bondings. Also see [3].

Figure 1. Molecular structure of TUC4C8[m,n] carbon nanotubes.

Considering Figure 1 it is straightforward to verify that TUC4C8[m,n], m, n ∈
N has χ(TUC4C8[m,n]) = 2 and ε(TUC4C8[m,n]) = 4(m+ 3mn). Therefore,

Hχ−(TUC4C8[m,n]) = Hχ+

(TUC4C8[m,n]) = 8(m+ 3mn)x3. Also see [3].

Figure 2 depicts the molecular structure of TUC4[m,n] carbon nanotubes. Also

see [3].

Figure 2. Molecular structure of TUC4[m,n] carbon nanotubes.

Considering Figure 2 it is straightforward to verify that the molecular graph of

TUC4[m,n], m, n ∈ N nanotube has 2m(n+ 1) vertices and 2m(2n+ 1) edges.

Also χ(TUC4[m,n]) = 2 therefore, Hχ−(TUC4[m,n]) = Hχ+

(TUC4[m,n]) =

4m(2n+ 1)x3.

Remark 2.6. For more generalised applications of vertex colouring such as lo-

cating certain technology at vertices the minimum parameter colour set could

be the set C = {c1, c2, c3, . . . , c`; ` ≥ χ(G)}. It implies that different chromatic

colourings in accordance with the Rainbow Neighborhood Convention are pos-

sible. Thus, for a particular chromatic colouring, a minimum (or maximum)

chromatic harmonic polynomial and a minimum (or maximum) chromatic har-

monic index can be derived.

Denote these general cases by Hχ−C (G, x), Hχ+
C (G, x) and

Hχ−C (G), Hχ+
C (G), respectively.
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Hence, we have

Theorem 2.7.

1. For cycle Cn
a. For n ≥ 3, and n is even,

2nx3 ≤ Hχ−C (Cn, x) = Hχ+
C (Cn, x) ≤ 2nx2`−1,

n
2 ≤ H

χ−C (Cn) = Hχ+
C (Cn) ≤ n

` .

b. For n ≥ 3, and n is odd,

2(n−2)x3+2x4+2x5 ≤ Hχ−C (Cn, x) ≤ 2(n−2)x2`−3+2x2`−2+2x2`−1,

2(n−2)x5+2x4+2x3 ≤ Hχ+
C (Cn, x) ≤ 2(n−2)x2`−5+2x2`−6+2x2`−7,

and
n
2 −

4
15 ≤ H

χ−C (Cn) ≤ n−2
`−1 + 4`−1

`(2`−1) ,
n−2
3 + 9

10 ≤ H
χ+
C (Cn) = n−2

`−2 + 4`−11
(2`−5)(`−3) .

2. For a prism Πn,

a. For n ≥ 3, and n is even,

6nx3 ≤ Hχ−C (Πn, x) = Hχ+
C (Πn, x) ≤ 6nx2`−3, and

3n
2 ≤ H

χ−C (Πn) = Hχ+
C (Πn) ≤ 3n

`−1 .

b. For n ≥ 3, and n is odd,

6(n−2)x3+6x4+6x5 ≤ Hχ−C (Πn, x) ≤ 6(n−2)x2`−3+6x2`−2+6x2`−1,

6(n−2)x5+6x4+6x3 ≤ Hχ+
C (Πn, x) ≤ 6(n−2)x2`−5+6x2`−6+6x2`−7,

3n
2 −

4
5 ≤ H

χ−C (Πn) ≤ 3
`−1 (n− 2`−1

` ),

n+ 7
10 ≤ H

χ+
C (Cn) ≤ 3(n−2)

`−2 + 3(4`−11)
(2`−5)(`−3) .

3. For complete graph Km,n, m,n ≥ 2,

2mnx3 ≤ Hχ−C (Km,n, x) ≤ Hχ+
C (Km,n, x) ≤ 2mnx2`−1,

mn
2 ≤ H

χ−C (Km,n) = Hχ+
C (Km,n) ≤ mn

` .

4. For Sn = K1,n−1, n ≥ 3,

2(n− 1)x3 ≤ Hχ−C (Sn, x) = Hχ+
C (Sn, x) ≤ 2(n− 1)x2`−1,

n−1
2 ≤ Hχ−C (Sn) = Hχ+

C (Sn) ≤ n−1
` .

5. For path Pn, n ≥ 3,

2(n− 1)x3 ≤ Hχ−C (Pn, x) = Hχ+
C (Pn, x) ≤ 2(n− 1)x2`−1,

n−1
2 ≤ Hχ−C (Pn) = Hχ+

C (Pn) ≤ n−1
` .

6. For Qn, n ≥ 1,

n2nx3 ≤ Hχ−C (Qn, x) = Hχ+
C (Qn, x) ≤ n2nx2`−1,

n2n−2 ≤ Hχ−C (Qn) = Hχ+
C (Qn) ≤ n2n−1

` .
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Remark 2.8. It is important to note that in Theorem 2.7, we applied the

min{min}, the max{min}, the min{max} and the max{max} principles.

Hence for a graph G there is no relation between max(Hχ−C (G, x)) and

min(Hχ+
C (G, x)) or max(Hχ−C (G)) and min(Hχ+

C (G)).

2.2. Results for split graphs. It follows that a connected graph is 1-critical

in respect of its CHP and CHI in that the addition (or deletion) of a vertex (or

vertices) or the addition (or deletion) of an edge (or edges) changes the out-

come thereof. Numerous well-defined graph structural derivatives have been

studied. For example, inserting a vertex into a single edge of certain graphs

can change the chromatic number. For example, inserting a vertex into into a

single edge of a cycle Cn, n is even to obtain a cycle Cn+1, n+1 is odd and vice

versa. In a graph where the chromatic number remains the same, an additional

polynomial term results.

We further our analysis by considering a split graph. Recall that a split graph

is a graph G for which the vertex set V (G) can be partitioned into two sets say

V1, V2 such that the induced graph 〈V1〉 is a clique and V2 is an independent

set. Furthermore a maximum split graph embodiment of G has |V2| a maximum.

The aforesaid means that all vertices in a clique of a split graph that are not

adjacent to a vertex in the independent set V2, must be an element of V2.

It also implies minimum clique order (or clique size). A general split graph

embodiment Gs of a graph G is the graph for which the vertex set G has

been partitioned into two sets V1, V2, and |V2| a maximum such that V2 is an

independent set. Any connected bipartite graph Bm,n is a general split graph

embodiment.

Theorem 2.9. For a maximum split graph embodiment of G of order n ≥ 2

and clique Kt and C = {c2, c3, c4, . . . , ct+1}, C′ = {c1, c2, c3, . . . , ct}, we have

that:

(1) Hχ−(G, x) = Hχ−C (Kt, x) +
∑

vivj∈E(G) and vi∈V1,vj∈V2

2xι(vi)+1 and,

(2) Hχ+

(G, x) = Hχ+

C′ (Kt, x) +
∑

vivj∈E(G) and vi∈V1,vj∈V2

2xι
′(vi)+t+1.

Proof. The proof follows from Proposition 2.2 and from the fact that ι′(vi) =

(t + 1) − (j − 1) if c(vi) = cj and the observation that in Kt all colour sum

terms increase by exactly 2. Also in (1) all vj ∈ V2 are coloured c1. In (2) all

vj ∈ V2 are coloured ct+1. �

2.3. Derivative split graphs. We derive a derivative split graph from a graph

G by defining the insertion of vertices into some edges of G. Note that the in-

serted vertices forms an independent set. Therefore a derivative split graph
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results in a general split graph embodiment.

Construct the derivative split graph denoted, G• in respect of G of order n and

vi ∈ V (G) by inserting a vertex ui ∈ U into edges ei ∈ E(G), 1 ≤ i ≤ ε(G).

Since ε(G) ≥ n− 1 we will consider two cases. By convention, if ε(G) = n− 1

we will write that Gs = Kε(G),n and if ε(G) > n−1 we will write Gs = Kn,ε(G).

Theorem 2.10. For a graph G, of order n ≥ 2 we have that:

(1) If ε(G) = n− 1 then Hχ−(G•, x) = Hχ+

(G•, x) = 2(2n−1)x3,

(2) If ε(G) > n− 1 then Hχ−(G•, x) = Hχ+

(G•, x) = 2ε(G)x3.

Proof. (1) If ε(G) = n − 1 then G is a path Pn or a star Sn−1 and in both

cases, G• = P2n−1. Hence, the result follows from Theorem 2.7

(2) If ε(G) > n−1 then G• is a path Pn+ε(G). Hence, the result follows from

Proposition Theorem 2.7. �

Construct the derivative split graph denoted, G1 +• G2 in respect of G1 +G2,

G1 of order n1 and G2 of order n2 and vi ∈ V (G1), wi ∈ V (G2) by inserting a

vertex ui ∈ U into edges viwj , 1 ≤ i ≤ ε(G1), 1 ≤ j ≤ ε(G2).

Theorem 2.11. For graph G1 of order n1, χ(G1) = t1 and graph G2 of

order n2, χ(G2) = t2 and t1 ≥ t2 and C1 = {c2, c3, c4, . . . , ct1+1}, C′1 =

{c1, c2, c3, . . . , ct1}, and C2 = {c2, c3, c4, . . . , ct2+1}, C′2 = {c1, c2, c3, . . . , ct2},
we have that:

(1) Hχ−(G1 +• G2, x) = Hχ−C1 (G1, x) +Hχ−C2 (G2, x)+∑
viuj∈E(G1+•G2),vi∈V (G1)

2xι(vi)+1 +∑
wiuj∈E(G1+•G2),wi∈V (G2)

2xι(wi)+1,

(2) Hχ+

(G1 +• G2, x) = H
χ+

C′1 (G1, x) +H
χ+

C′2 (G2, x)+∑
viuj∈E(G1+•G2),vi∈V (G1)

2xι
′(vi)+t1+1 +

∑
wiuj∈E(G1+•G2),wi∈V (G2)

2xι
′(wi)+t1+1.

Proof. (1). Note that d(ui) = 2, ∀i in such a way that each vertex ui is adja-

cent to one vertex vj ∈ V (G1) and to one vertex wk ∈ V (G2). Denote these

edges E(U). Hence, E(U) can be partitioned into two edge sets E1(U), E2(U)

of equal cardinality, n1 · n2. Without loss of generality assume E1(U) has the

edges incident with vertices in V (G1) and E2(U) has the edges incident with
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vertices in V (G2). Furthermore U is the maximum independent set in G1+•G2.

Therefore to ensure minimum colour sums all ui ∈ U have colour c1. It implies

that the last two summation terms follow from Definition 2.1.

Furthermore, since no edge exists between a vertex vi ∈ V (G1) and wj ∈ V (G2)

and t1 ≥ t2 the colour set C = {c2, c3, c4, . . . , ct1+1} will allow a chromatic

colouring of both G1, G2 in accordance with the Rainbow Neighborhood Con-

vention. The aforesaid together with Definition 2.1 imply the first two terms.

Hence, the result.

(2). Similar reasoning as in (1) provides the result. �

Note that each vi ∈ V (G1) is adjacent to exactly n2 vertices in U and each wj ∈
V (G2) is adjacent to exactly n1 vertices in U . Theorem 2.7 has an immediate

consequence for the corona graph, G1 ◦G2 with similar vertex insertion.

Corollary 2.12. For graph G1 of order n1, χ(G1) = t1 and graph G2 of

order n2, χ(G2) = t2 and t1 ≥ t2 and C1 = {c2, c3, c4, . . . , ct1+1}, C′1 =

{c1, c2, c3, . . . , ct1}, and C2 = {c2, c3, c4, . . . , ct2+1},
C′2 = {c1, c2, c3, . . . , ct2}, we have that:

(1) Hχ−(G1 ◦• G2, x) = Hχ−C1 (G1, x) + n1 ·Hχ−C2 (G2, x)+∑
viuj∈E(G1◦•G2),vi∈V (G1)

2xι(vi)+1 +

∑
wiuj∈E(G1◦•G2),wi∈V (G2)

2n1x
ι(wi)+1,

(2) Hχ+

(G1 ◦• G2, x) = H
χ+

C′1 (G1, x) + n1 ·H
χ+

C′2 (G2, x)+∑
viuj∈E(G1◦•G2),vi∈V (G1)

2xι
′(vi)+t1+1 +

∑
wiuj∈E(G1◦•G2),wi∈V (G2)

2n1x
ι′(wi)+t1+1.

Proof. Since for each vertex vi ∈ V (G1) there exists an induced subgraph

vi+G2 we have vi+
•G2 after the defined vertex insertion. Hence, independent

from G1, n1 such induced subgraphs exist in G1 ◦•G2. Invoking Theorem 2.11

the result follows. �

Corollary 2.12 gives way to a new concept called the cluster corona of graphs

G1, G2. In the corona G1 ◦G2 as we know it we say, G2 has been corona’ed to

G1.

Definition 2.13. For the graph G1 of order n1 and k ≥ 1, k ∈ N take n1k

copies of G2. The cluster corona denoted, G1(◦k)G2 is the graph obtained by

corona’ing k copies of G2 to each vertex vi ∈ V (G1).

Our next result follows directly from Corollary 2.12
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Corollary 2.14. For graph G1 of order n1, χ(G1) = t1 and for k ≥ 1,

k ∈ N copies of graph G2 of order n2, χ(G2) = t2 and t1 ≥ t2 and C1 =

{c2, c3, c4, . . . , ct1+1},
C′1 = {c1, c2, c3, . . . , ct1}, and C2 = {c2, c3, c4, . . . , ct2+1},
C′2 = {c1, c2, c3, . . . , ct2}, we have that:

(1) Hχ−(G1(◦k)•G2, x) = Hχ−C1 (G1, x) + kn1 ·Hχ−C2 (G2, x)+∑
viuj∈E(G1(◦k)•G2),vi∈V (G1)

2kxι(vi)+1 +

∑
wiuj∈E(G1(◦k)•G2),wi∈V (G2)

2kn1x
ι(wi)+1,

(2) Hχ+

(G1(◦k)•G2, x) = H
χ+

C′1 (G1, x) + kn1 ·H
χ+

C′2 (G2, x)+∑
viuj∈E(G1(◦k)•G2),vi∈V (G1)

2kxι
′(vi)+t1+1 +

∑
wiuj∈E(G1(◦k)•G2),wi∈V (G2)

2kn1x
ι′(wi)+t1+1.

Perhaps the applied value of the cluster corona lies in finding various edge-

defined indices and other edge-defined invariants for the recursive corona which

was introduced by Vernold Vivin and Kaliraj in [6]. The recursive corona is

defined as G1 ◦l G2 = (G1 ◦l−1G2) ◦G2, l ≥ 1. Now clearly after finite number

of iterations say k, there exists an core subgraph G1(◦k)G2. Thereafter a layer

of bridges (sets of cut edges) follows to be enumerated in the edge-defined

index or invariant. Following on that a well-defined number say, c of cluster

corona graphs G2(◦c)G2 follow, and so on. We shall not report on the recursive

method in further detail in this paper. Describing algorithms and analysing

complexity remain open.

3. Conclusion

It is clear that a wide field of further applications are available from for ex-

ample, just the small graphs. The aim of this paper is indeed to only serve as an

introduction to the concept of chromatic harmonic polynomials and chromatic

harmonic indices. It is almost certain that this new concept will find applica-

tions in other research streams of graph theory and mathematical chemistry.

Open access: This paper is distributed under the terms of the Creative Com-

mons Attribution License which permits any use, distribution and reproduction

in any medium, provided the original author(s) and the source are credited.
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