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ABSTRACT. In the main this paper introduces the concept of chromatic
harmonic polynomials denoted, HX (G, ) and chromatic harmonic indices
denoted, HX(QG) of a graph G. The new concept is then applied to find-
ing explicit formula for the minimum (maximum) chromatic harmonic
polynomials and the minimum (maximum) chromatic harmonic index of
certain graphs. It is also applied to split graphs and certain derivative

split graphs.
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1. INTRODUCTION

For general notation and concepts in graphs and digraphs see [1] [7]. Unless
mentioned otherwise all graphs are simple, connected and undirected graphs.
In this article a graph G will have order n > 2 with vertex set V(G) =

{v1,v2,v3,...,v,} and size p > 1 with edge set E(G) = {e1,e2,€3,...,€p},
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denoted as ¥(G) = n and €(G) = p. An edge e; = v;v; means that the vertices
v, v; are adjacent. A multivariate polynomial over a field whose Laplacian is
zero is termed as Harmonic polynomial. They form a vector subspace of the
vector space of polynomials over the field.

In [8] Zhong introduced the harmonic index for graphs. Harmonic index is
one of the most important indices in chemical and mathematical fields. It is a
variant of the Randic index which is the most successful molecular descriptor
in structure-property and structure activity relationship studies. Very recently
in [2], Iranmanesh et. al introduced the concept of the harmonic polynomial of
a graph G as

Definition 1.1. [2] H(G,z) = Y 2zdc+de®)=1 where
wveE(G)

[y H(G,z) = H(G).

Researchers are interested in considering the relationship between the harmonic
index and the eigenvalues of graphs, determining the minimum and maximum
values of the harmonic index and, estimating the bounds for H(G).

In [8] the authors established explicit formulas for the harmonic polynomial of
several classes of graphs.

It is observed that most structural indices of kind, are defined in terms of the
vertex degree in G. The variation we will consider is that of the colour of a
vertex when applying what is known to be a minimum parameter chromatic
colouring to G [4].

2. CHROMATIC HARMONIC POLYNOMIAL AND CHROMATIC HARMONIC
INDEX

One may recall that if C = {¢1,co,c3,...,¢0} is a set of distinct colours,
a proper vertex colouring of a graph G denoted ¢ : V(G) — C is a vertex
colouring such that no two distinct adjacent vertices have the same colour.
The cardinality of a minimum set of colours which is a proper vertex colouring
of G is called the chromatic number of G and is denoted x(G). When a vertex
colouring is considered with colours of minimum subscripts the colouring is
called a minimum parameter colouring. Unless stated otherwise we consider
minimum parameter colour sets throughout this paper. The number of times a
colour ¢; is allocated to vertices of a graph G is denoted by 6(c;) and ¢ : v; — ¢;
is abbreviated, ¢(v;) = ¢;. Furthermore, we define an important derivative in-
dex that is, if ¢(v;) = ¢; then ¢(v;) = j.

Rainbow Neighborhood Convention:[5] Unless mentioned otherwise we
shall consider the colours C = {c1,¢9,c¢3,...,c¢} and always colour vertices
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with maximum c¢;, followed by maximum ¢y among the remaining uncoloured
vertices, ..., followed by maximum ¢, for the final remaining uncoloured ver-
tices.

Note that the Rainbow Neighborhhood Convention ensures a minimum valued
chromatic harmonic polynomial and therefore a minimum chromatic harmonic
index. The inverse to the convention ensures the maximum valued chromatic
harmonic polynomial and the maximum chromatic harmonic index. The inverse
colouring requires the mapping c¢; — ¢,_(j_1). Corresponding to the inverse
colouring we define the inverse index ¢/(v;) = £ — (j — 1) if ¢(v;) = ¢;. We
shall colour a graph in accordance with the Rainbow Neighborhood Convention
[5]. We are now ready to introduce the definitions of the chromatic harmonic
polynomials and the chromatic harmonic indices.

Definition 2.1. For a graph G and the minimum parameter colour set C =
{e1,¢0,¢3,..., ¢y} the minimum (or maximum) chromatic harmonic polyno-
mial (CHP~ or CHP™") and the minimum (or maximum) chromatic harmonic
index (CHI~ or CHI™") are defined as

HYX (Gyz)= Y 20+ and HX (G) = [ HX (G, )
’Uri’UjEE(G)
and,
HX (Gz)= Y 220+ () and HX'(GQ) = fol HX (G, )
’Ui’UjEE(G)

Proposition 2.2. For a complete graph K,, n > 2,
(1) If n is even, then

HX7 (K»,“(E) _ HX+ (Kn,l') =9. [x2n—1 +x2n—2_~_2(x2n—3 +x2n—4)+3(1.2n—5+
x2n—6) 4+t %(xn+2 +xn+1> +
(5 = D" +2" ) + (5 = 2@ 72 +a" ) + -+ 2 +2%) + ' +27],

(2) If n is odd, then

X~ (Kn,I) _ HXJr(Kn,JJ) — 2.[$2n—1 +x2n—2+2(w2n—3 +x2n—4>+3(x2n—5+
xQn—G) 4+t L%J (l.n+3 + xn+2 + In+1) 4
(5] =DE"+2" )+ ([5] = 2)@" 2 +2"7%) + - +2(2° +2°) + 2 +27).

Proof. For a complete graph K,, n > 2 we have that 6(¢;) = 1, V¢; €
{c1,¢2,¢5,...,¢cn}. Tt is known that for the integers a < b there exist exactly
t = (b —a) — 1 integers which all hence, anyone say z, satisfies a < z < b. It
implies that there are L%J pairs of such inbetween integers with sum equal to
a+b. Also, for t even we have that [£] = [Z£1]. Clearly as a result of com-
pleteness the principle of symmetry in summation applies and both the results

follow from Definition 2.1 and through immediate induction. O
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Proposition 2.3. For a cycle C,,, n >3

(1) When n is even,

HX (Cyp,z) = HX (Cy, ) = 2na®, and HX (C,,) = HX (Cp,) = 2,

(2)When n is odd,

HX (Cp,z) = 2(n — 2)a® + 22 + 225, HX (Cp, x) = 2(n — 2)2® + 22* + 223,
and

HY (Cp) =2 — &, HX'(Cp) = 252 + 2.

Proof. (1) For n is even, C,, is bipartite hence, the chromatic number equals
2. Further, because |E(C,,)| = n the results follow easily.

(2) For odd n, the chromatic number of C,, , x(C},) = 3. For minimum colour
sums for the edges the minimum parameter colour set {¢1, ¢, c3}, allows exactly
one vertex say, v, with colour cs. It follows that v,, is adjacent to vertices with
colours ¢, ¢y respectively. Therefore the colour sum terms 2z* and 2z° follow.
For all the other n — 2 edges the colour sum term 2z3 applies.

For maximum colour sums for the edges the colour rotation mapping ¢; —
¢y—(i—1) applies and the result follows along the same reasoning. ]

Proposition 2.4 discuss HX and H X" of the certain classes of graphs such as
an Km,ny Sn - KLn—l, P’n,7 and Qn

Proposition 2.4.

1. For a prism I1,,, formed by the two cycle C,, n > 3 and n is odd,

HX (I, z) = 6(n — 2)z® + 62" + 62°= 3* — 2 and,

HX" (I, ) = 6(n — 2)a® + 62 + 62° = n + &, and

For n is even,
HX (I, z) = HX (W, z) = 6na®.

2. For complete bipartite graph K, ,,, where m,n > 2,
HX (K, x) = HX (Kppp, ) = 2mna,
HX (Ko ) = HY (K ) = 2.
3. Forn>3, and S, = K1 1,

HX (Sp,z) = HX (S,,2) = 2(n — 1)a®,

- + n—
HX(S,) = HX'(S,) = n5L.
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4. For Path P,, n > 3,
HX (P,,z) = HX (P,,z) = 2(n —1)a3

HX (P,) = HX (P,) = 21,

5. For Qn =Ky x Qn—l; n > 17
HX (Qn,2) = HX (Qn,z) = n2"23 and HX (Q,) = HX (Qn) =
n2n—2,

Proof. Consider the prism formed by the two cycle C,,, n > 3 and n is odd. La-
bel the vertices of the respective cycles as vy, vo, vs, ..., v, and uy, ug, us, ..., Uy
such that we have the edges, v;u;, 1 < i < n. Colour the vertices as c¢(vy) =
c1,c(v2) = ca,c(vs) = ey, c(Vp—1) = ¢a,¢(vy) = ¢z and c(uy,) = 1, c(ur) =
2,c(uz) = ¢y, -, c(un—1) = c3. Clearly, this vertex colouring ensures minimum
colour sums for all edges and the result follows. For maximum colour sums for
the edges the colour rotation mapping ¢; — ¢, _(;—1) applies and the result fol-
lows along the same reasoning. Since all graphs K, », Sp = Ki,n-1, Py, and
Q. are bipartite, the respective chromatic number equals 2. Further, because
[B(C)| = 1, | E(IL)| = 30, |E(Kom)| = mn, [E(S,)] = n = L|E(P,)| =n—1
and |E(Q,)| = n2(»~1) one may easily check that the results follows. O

Corollary 2.5. Any graph G of size (G) = p and x(G) = 2, has HX (G,z) =
HX (G,x) =2pz® and HX (GQ) = Hx*(g) —z

Proof. Clearly each edge e € E(G) is incident with vertices coloured ¢; and co,
respectively. Hence, the result. ([l

A wide variety of remarkable graphs have chromatic number equal to 2. In-
voking Corollary 2.5 to some important 2-chromatic graphs are tabled below.
Table 1.

Graph G v(G) £(GQ) Degree regularity | HX (G,z) = HX+ (G,z) | HX (G) = HX (G)
Tofinova-Ivanov 110 165 3 33022 e
Balaban 10-cage 70 105 3 21023 185

Cubicle 8 12 3 2425 6
Dyck 32 48 3 9627 24

Ellingham-Horton | 54(78) | 81(167) 3 16223 (3342°) 31 (187)

Fy6A 26 39 3 78x3 37
Folkman 20 40 4 80x° 20
Foster 90 135 3 27023 ==

Franklin 12 18 3 3825 9
Gray 54 81 3 162z° Bl
Harries 70 105 3 21023 105
Heawood 14 21 3 4223 2L
Hoffman 16 32 4 645> 16
Horton 96 144 3 288z3 72
Ljubljana 112 168 3 23625 84
Naura 24 36 3 7222 18
Pappus 18 27 3 545 r
Tutte-Coxeter 30 45 3 902" 475
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2.1. Application in mathematical chemistry. Figure 1 depicts the molec-
ular structure of TUC4Cs[m,n] carbon nanotubes together with the graphi-
cal representation where vertices represent carbon atoms and edges represent
bondings. Also see [3].

FIGURE 1. Molecular structure of TUC4Cg[m,n] carbon nanotubes.

Considering Figure 1 it is straightforward to verify that TUCy4Cs[m,n], m,n €
N has x(TUC4Cg[m,n]) = 2 and e(TUC4Cs[m,n]) = 4(m + 3mn). Therefore,
HX (TUC4Cs[m, n)) = HX (TUC4Cs[m,n]) = 8(m + 3mn)az®. Also see [3).
Figure 2 depicts the molecular structure of TU Cy[m, n] carbon nanotubes. Also
see [3].

R~ &R

FIGURE 2. Molecular structure of TUCy[m,n] carbon nanotubes.

Considering Figure 2 it is straightforward to verify that the molecular graph of
TUC4[m,n], m,n € N nanotube has 2m(n + 1) vertices and 2m(2n + 1) edges.
Also X(TUCy[m,n]) = 2 therefore, HX (TUC4m,n]) = HX (TUC4[m,n]) =
4m(2n + 1)z3.

Remark 2.6. For more generalised applications of vertex colouring such as lo-
cating certain technology at vertices the minimum parameter colour set could
be the set C = {c1,¢a,¢3,...,¢ce;€ > x(G)}. It implies that different chromatic
colourings in accordance with the Rainbow Neighborhood Convention are pos-
sible. Thus, for a particular chromatic colouring, a minimum (or maximum)
chromatic harmonic polynomial and a minimum (or maximum) chromatic har-
monic index can be derived.

Denote these general cases by HXc (G, z), HXE (G,z) and

HXce (G), HXE (G), respectively.
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Hence, we have

Theorem 2.7.

1.
a.

For cycle C,

Forn > 3, and n is even,

2nad < HXe (Cy,z) = HXe (Cp,z) < 2na? 1,
n < HXe (C,) = HXC (Cy) < 2.

. Forn >3, and n is odd,

2(n—2)2% 42244225 < HXce (C,, )
2(n—2)z° + 2244223 < HXC (Chn,x)

INIA

4 - -2 40—1
_*SHXC(Cn)§%+m7
-2 9 Py _ n—2 40—-11
55+ 15 S H<(Cn) = =5 + mesi—s
For a prism 11,
Forn > 3, and n is even,
6na® < HXe (I, z) = HXE (I, x) < 6na?3, and
3 < HXe (II,) = HX¢ (IL,) < 2.

. Forn >3, and n is odd,

2(71—2)332[734-2332272+2JU2£71,
2(n72)x2275+2$2£76+2I2E77’

6(n—2)x>+62*4+-62° < HXc (Il,,, x) < 6(n—2)2* 346222462271,
6(n—2)2° + 624 +623 < HXC (I, ) < 6(n—2)a2 >+ 62206 + 6227,

o LI (IL) < fhyln - 20,

- + 3(n—2) | _3(4¢-11)
n+ 35 < HX (Cn) < T + Gros=9)-

. For complete graph K, »,, m,n > 2,
2mnx3 < HXc (K, x) < axé (K, ) < 2mnz?-1,

< HX (K ) = HXE (K ) < 52

For S, = K11, n > 3,

2n — 1)ad < HXe (S, 2) = HXE (S, 2) < 2(n — 1)a2~

< HXe (S,) = HXE(S,) <

. For path P,, n > 3,
2(n — 1)a3 < HXe (P,, ) = HX¢ (P, z) < 2(n — 1)22¢-

n-l < gxe (P,) = HX¢ (P,) < 251,

. For@Q,,n>1,

n2mad < HXe (Qn, ) = szr(me) < pong2-1,
n2"? < HYC(Qn) = HY (Qn) < 24—
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Remark 2.8. It is important to note that in Theorem 2.7, we applied the
min{min}, the max{min}, the min{max} and the maz{mazx} principles.
Hence for a graph G there is no relation between maz(HXc (G, z)) and
min(HXér(G,x)) or max(HXe (G)) and min(HXér(G)).

2.2. Results for split graphs. It follows that a connected graph is 1-critical
in respect of its CHP and CHI in that the addition (or deletion) of a vertex (or
vertices) or the addition (or deletion) of an edge (or edges) changes the out-
come thereof. Numerous well-defined graph structural derivatives have been
studied. For example, inserting a vertex into a single edge of certain graphs
can change the chromatic number. For example, inserting a vertex into into a
single edge of a cycle C,,, n is even to obtain a cycle C), 1, n+1 is odd and vice
versa. In a graph where the chromatic number remains the same, an additional
polynomial term results.

We further our analysis by considering a split graph. Recall that a split graph
is a graph G for which the vertex set V(G) can be partitioned into two sets say
Vi1, V4 such that the induced graph (V;) is a clique and V5 is an independent
set. Furthermore a mazimum split graph embodiment of G has |V5| a maximum.
The aforesaid means that all vertices in a clique of a split graph that are not
adjacent to a vertex in the independent set V5, must be an element of V5.
It also implies minimum clique order (or clique size). A general split graph
embodiment G° of a graph G is the graph for which the vertex set G has
been partitioned into two sets Vi, Vs, and |Va| a maximum such that V5 is an
independent set. Any connected bipartite graph B,, ,, is a general split graph
embodiment.

Theorem 2.9. For a mazimum split graph embodiment of G of order n > 2

and clique K; and C = {co,c3,¢4,...,¢41}, C' = {c1,¢2,¢3,...,¢}, we have
that:
(1) HX (G,z) = HXc (K, x) + > 224+ gnd,

v;v; EE(G) and v;€V1,v;€V;

(2) HX (G, z) = HX (K, x) + > 2t (v)Ft+1,

v;v; EE(G) and v;€Vy,v;€Va
Proof. The proof follows from Proposition 2.2 and from the fact that ¢/(v;) =
(t+1) —(j — 1) if ¢(vi) = ¢; and the observation that in K all colour sum
terms increase by exactly 2. Also in (1) all v; € V5 are coloured ¢;. In (2) all
v; € Vy are coloured c;41. O

2.3. Derivative split graphs. We derive a derivative split graph from a graph
G by defining the insertion of vertices into some edges of G. Note that the in-
serted vertices forms an independent set. Therefore a derivative split graph
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results in a general split graph embodiment.

Construct the derivative split graph denoted, G* in respect of G of order n and
v; € V(G) by inserting a vertex u; € U into edges e; € E(G), 1 < i < ¢(G).
Since £(G) > n — 1 we will consider two cases. By convention, if ¢(G) =n — 1
we will write that G* = K_(q),, and if ¢(G) > n—1 we will write G* = K,, ().

Theorem 2.10. For a graph G, of order n > 2 we have that:
(1) If e(G) =n — 1 then HX (G*,z) = HX (G*,z) = 2(2n—1)a?,

(2) If (G) > n— 1 then HX (G*,z) = HX' (G*,z) = 2(G)a3.

Proof. (1) If e(G) = n — 1 then G is a path P, or a star S,_; and in both
cases, G* = P,,,_1. Hence, the result follows from Theorem 2.7

(2) If (G) > n—1 then G* is a path P, (). Hence, the result follows from
Proposition Theorem 2.7. O

Construct the derivative split graph denoted, G; +°® G5 in respect of G1 + Ga,
G; of order ny and Gq of order ny and v; € V(G1), w; € V(G3) by inserting a
vertex u; € U into edges v,wj, 1 <i <e(Gr), 1 <j <e(Ga).

Theorem 2.11. For graph G1 of order ny, x(G1) = t1 and graph Gy of
order na, xX(Ga) = t2 and t1 > tg and C; = {ca,¢3,¢C4y...,Ct41), C7 =
{c1,¢2,¢5,...,¢c4, }, and Co = {ca,c3,¢4y...,Ct41}, Ch = {c1,c0,¢3,...,¢1,},
we have that:

(1) HX (G1 +* Ga,2) = HX1 (Gy, @) + HY2 (G, 2) +
2tV 1 4
viu; EE(G1+°G2),v,€V(G1)
2.’Eb(wi)+1,
wiu; €EE(G1+*G2),w; €V (G2)

(2) HX' (G1 +°* Ga,z) = Y (Gr,z) + H (Ga, )+
Qmu(v,-)+t1+1 +
viu; €E(G1+°G2),v;€V(G1)
9t (wi)+t1+1
wiu; €E(G1+*G2),w; €V (G2)

Proof. (1). Note that d(u;) = 2, Vi in such a way that each vertex w; is adja-
cent to one vertex v; € V(G1) and to one vertex wy € V(G2). Denote these
edges E(U). Hence, E(U) can be partitioned into two edge sets E1(U), E2(U)
of equal cardinality, ny - ny. Without loss of generality assume E;(U) has the
edges incident with vertices in V(G1) and E5(U) has the edges incident with
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vertices in V(Gz). Furthermore U is the maximum independent set in G; +° Ga.
Therefore to ensure minimum colour sums all u; € U have colour ¢;. It implies
that the last two summation terms follow from Definition 2.1.

Furthermore, since no edge exists between a vertex v; € V(G1) and w; € V(Ga)
and t; > ty the colour set C = {c2,¢3,¢4,...,¢+1} Will allow a chromatic
colouring of both G, G5 in accordance with the Rainbow Neighborhood Con-
vention. The aforesaid together with Definition 2.1 imply the first two terms.
Hence, the result.

(2). Similar reasoning as in (1) provides the result. d

Note that each v; € V(G1) is adjacent to exactly ng vertices in U and each w; €
V(G2) is adjacent to exactly ny vertices in U. Theorem 2.7 has an immediate
consequence for the corona graph, GG; o G with similar vertex insertion.

Corollary 2.12. For graph Gy of order ny, x(G1) = t1 and graph Gy of

!
order na, xX(G2) = t2 and t1 > to and C; = {ca,c3,C4y...,¢1,41}, Cf =
{017027037 e 7Ct1}a and CQ - {627037047 e 7ct2+1}7
Chy={c1,ca,¢3,...,ct,}, we have that:

(1) HX (Gy o* Go, ) = HXe1 (Gy,x) 4+ ny - H¥e2(Go, )+
2xL(’U1‘)+1 4
vinGE(Glo'GQ),viEV(G1)
2nq (w1
w;u; EE(G10°G2),w; €V (G2)
+ +
(2) HX" (Gy 0® Go,x) = H % (G1,a) +ny - H % (G, )+
21:L/(’L)7;)+t1+1 4
1)iuj€E(G10’G2),U1,€V(G1)
oyt (W Hti+l
wiuj €EE(G10°Ga),w; €V (G2)

Proof. Since for each vertex v; € V(G;) there exists an induced subgraph
v; + G2 we have v; +° G5 after the defined vertex insertion. Hence, independent
from G1, n1 such induced subgraphs exist in G; 0® G5. Invoking Theorem 2.11
the result follows. [l

Corollary 2.12 gives way to a new concept called the cluster corona of graphs
G1, G3. In the corona G o G5 as we know it we say, G2 has been corona’ed to

Gi.

Definition 2.13. For the graph G of order ny and k£ > 1, k € N take n1k
copies of G. The cluster corona denoted, G (oF)Gs is the graph obtained by
corona’ing k copies of Ga to each vertex v; € V(Gy).

Our next result follows directly from Corollary 2.12
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Corollary 2.14. For graph Gi of order ni, x(G1) = t; and for k > 1,
k € N copies of graph Go of order na, x(Ga) = t2 and t1 > ta and C; =

{027037C4w"7ct1+1}7

’
Cl = {015025037' . 'act1}7 and CQ = {025037047- . -;ct2+1};
Ch={c1,ca,¢3,...,c1,}, we have that:

(1) HX (G1(c%)*Ga, ) = HX\ (Gy,z) 4 kny - HX2 (Gy, z)+
Dkt ()1 4

viuj EE(G1(0F)*G2),v;€V(G)
2knq (w1

Wi GE(Gl(Ok).GQ),’wiEV(Gz)

+ +
(2) HX (G1(0%)*Ga,x) = H 4 (Gy, ) + kny - H % (Ga, )+

Z eyt (i) Ht1+1 +
viu; EE(G1(0F)*G2),v;€V(G1)
> 2hknqat (Wi Ht+L

w;u; EE(G1(0%)*Ga),w, €V (G2)

Perhaps the applied value of the cluster corona lies in finding various edge-
defined indices and other edge-defined invariants for the recursive corona which
was introduced by Vernold Vivin and Kaliraj in [6]. The recursive corona is
defined as G o! Gy = (G 0!"1 G3) 0 G, I > 1. Now clearly after finite number
of iterations say k, there exists an core subgraph G (o*)Gsy. Thereafter a layer
of bridges (sets of cut edges) follows to be enumerated in the edge-defined
index or invariant. Following on that a well-defined number say, ¢ of cluster
corona graphs Ga(o¢)G3 follow, and so on. We shall not report on the recursive
method in further detail in this paper. Describing algorithms and analysing
complexity remain open.

3. CONCLUSION

It is clear that a wide field of further applications are available from for ex-
ample, just the small graphs. The aim of this paper is indeed to only serve as an
introduction to the concept of chromatic harmonic polynomials and chromatic
harmonic indices. It is almost certain that this new concept will find applica-
tions in other research streams of graph theory and mathematical chemistry.

Open access: This paper is distributed under the terms of the Creative Com-
mons Attribution License which permits any use, distribution and reproduction
in any medium, provided the original author(s) and the source are credited.
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