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Abstract. In this paper, we classify the skew cyclic codes over Fp +

vFp + v2Fp, where p is a prime number and v3 = v. Each skew cyclic

code is a Fp+vFp+v2Fp-submodule of the (Fp+vFp+v2Fp)[x; θ], where

v3 = v and θ(v) = −v. Also, we give an explicit forms for the generator of

these codes. Moreover, an algorithm of encoding and decoding for these

codes is presented.
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1. Introduction

Recently, there has been a vast interests on the study of cyclic codes. It is

mainly due to their applications in power management [21], secret sharing [24,

23], steganography [14], etc. Also, these codes are easy to design considering

their high accuracy and performance. In the last decades, the literature was

limited to study the cyclic codes over finite fields. But, recently, there are
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a lot of papers which studies the cyclic codes over finite rings like [8, 18, 9].

First, unlike the finite fields, there is not any limitation for the number of

input symbols in the cyclic codes over finite rings. Second, the polynomial ring

over a finite ring is not necessarily a UFD. Thus, there may be more divisors

for xn − 1 which results in more possibilities to choose a generator polynomial.

These benefits pays the way to introduce new families of cyclic coding categories

like quasi cyclic codes [1], constacyclic codes [27], and double codes [11].

One of the most applicable type of cyclic codes is skew cyclic codes which

were introduced by Boucher in [4]. The structure of these codes are based

on the skew polynomial rings. The reason of choosing these non commutative

rings is the fact that factorization in these rings is even harder than the one

in polynomial rings. So the possibilities of choosing a generator polynomial

grows. Boucher also introduced different types of skew cyclic codes in [6, 5].

Then in the papers [19, 10, 26, 12], the skew cyclic codes over different rings

are proposed. Also the authors in [13] defined the skew cyclic codes over a

finite chain rings.

For a given automorphism θ of R, the set R[x; θ] consisting of polynomials

f = a0 + a1x + · · · + anx
n, with ai ∈ R forms a ring under usual addition

of polynomials and multiplication defined by the rule (axi)(bxj) = aθi(b)xi+j ,

for each a, b ∈ R, and is called the skew polynomial ring over R. Also, an

skew cyclic code C over a ring R is an R-submodule of R[x; θ] such that if

(c0, c1, · · · , cn−1) ∈ C, then (θ(cn−1), θ(c0), · · · , θ(cn−2) ∈ C. If F is a field, it

is proved that codes are in fact the submodules of F[x;θ]
<xn−1> (e.g., see [4]). We

prove the same result for the skew cyclic codes over Fp + vFp + v2Fp. Also for

each ring R, R[x;θ]
<xn−1> is a ring if and only if xn − 1 ∈ Center(R[x; θ]). So we

need to find the center of R, if we want to exploit the ring structure of skew

cyclic codes.

The Hamming distance of U = (u0, · · ·un−1), V = (v0, · · · vn−1) over a ring

T , is the cardinality of the set {i|vi 6= ui}. Also the Lee distance U, V is:

dL(U, V ) =

n−1∑

i=0

|ui − vi|, (1.1)

where |.| means a metric over T .

In this paper, we try to classify the skew cyclic codes over the ring Fp +

vFp + v2Fp where v3 = v and θ(v) = −v. We study the construction of

(Fp+ vFp+ v2Fp)[x; θ]. This helps us to classify the skew cyclic codes. Finally,

we propose an algorithm to encode and decode the principle codes. For the

other types of codes, we give an explicit form of their generators.

2. On the Ring (Fp + vFp + v2Fp)[x; θ]

We study on the ring R = (Fp + vFp + v2Fp)[x; θ] where θ(v) = −v and

v3 = v. First, we have to find the properties of S = Fp + vFp + v2Fp.
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Now, we try to find the units and nonzero divisors of S.

Proposition 2.1. Let u = a + bv + cv2 ∈ S. Then u ∈ U(S), if and only if

a 6= 0 and a− b+ c 6= 0 or a+ b+ c 6= 0.

Proof. ⇐ As a 6= 0 it suffices to prove that u′ = 1 + a−1bv + a−1cv2 ∈ U(S).

For, ⇒ Let u = a + bv + cv2 ∈ U(S). u is unit, if and only if the following

matrix equation has a unique solution.


a 0 0

b a+ c b

c b a+ c


 [x, y, z]T = [1, 0, 0]T . (2.1)

This equation has solution, if and only if the determinant of the above matrix

is nonzero. This follows the result. �

Proposition 2.2. Let z = a+ bv + cv2 ∈ S. Then z is a zero divisor in S, if

and only if either a = 0, or a+ c− b = 0, or a+ b+ c = 0.

Proof. Let z(d+ fv + hv2) = 0. So the following equations holds.

ad = 0

bd+ (a+ c)f + bh = 0

cd+ af + h(c+ a) = 0 (2.2)

The above equation has a nonzero solution for the vector (d, f, h), if and only

if the determinant of the following matrix is zero.


a 0 0

b a+ c b

c b a+ c


 . (2.3)

It means that d + fv + hv2 6= 0, if and only a((a + c)2 − b2) = 0. So either

a = 0, or a+ c− b = 0, or a+ b+ c = 0. �

Corollary 2.3. u ∈ S is nonzero divisor, if and only if u is unit.

Proposition 2.4. The only automorphisms of S are θ(a+bv+cv2) = a−bv+

cv2 and the identity.

Proof. Let a+ bv + cv2, f + gv + hv2 ∈ S. Let θ(v) = x+ yv + zv2. If θ is an

automorphism, then

x+ yv + zv2 =θ(v) = θ(v3) = (x+ yv + zv2)3

=x3 + v(3yz2 + 6xyz + y3 + 3x2y)

+v2(z3 + 3xz2 + 3y2z + 3x2z + 3xy2) (2.4)

If x = 0, one can find that b = ±1, z = 0 or y = 0, z = ±1. But v 6= v2, so

z = ±1 is impossible. So either θ(v) = −v or θ is identity.
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Assume that x = ±1. Since v is zero divisor and θ is an automorphism,x+

yv + zv2 is also a zero divisor. Considering the fact that x 6= 0, y = ±z. So

y = y3 ± 6y2 + 6y , ±y = 4± y3 + 6y2 ± 3y (2.5)

One can see that these equations do not have any solution except y = 0. But

θ(v) 6= 1, since θ is surjective. This ends the proof. �

Proposition 2.5. Nil(S) = 0.

Proof. Let zn = 0. Without loss of generality, suppose that n is even. So

(a + bv + cv2)n = 0 which means that an = 0. Hence z = v(b + cv). Since

v(b + cv) is a zero divisor, b2 = c2 or b = 0 by lemma 2.2. If b = 0, z = 0.

Assume that b2 = c2. So

0 = v2(b+ cv)n = v2bn(1 + v

n
2∑

i=0

(
n

2i+ 1

)
+ v2

n
2∑

i=0

(
n

2i

)
) (2.6)

This implies
∑n

2

i=0

(
n

2i+1

)
= 0 and

∑n
2

i=1

(
n
2i

)
= 1. So (1 − 1)n = 2 which is

impossible. Hence Nil(S) = 0. �

Now, we try to study the structure of R = S[x; θ]. In the first place, we find

the center of R.

Theorem 2.6. center(R) = {
∑

n znx
n|∃an, bn ∈ Fp, zn = an + cnv

2}.

Proof. Let f(x) =
∑

n znx
n ∈ center(R). Let z2k+1 6= 0 for some k. So if

f(x) = h(x) + z2k+1x
2k+1, then

vf(x) = vh(x) + vz2k+1x
2k+1 6= h(x)v − vz2k+1x

2k+1 =h(x)v + z2k+1x
2k+1v

=f(x)v. (2.7)

So center(R) ⊆ S[x2; θ]. Now assume that zn = an + vbn + v2cn. So

xf(x) = x
∑

n

(an + vbn + v2cn)x
n =

∑

n

(anx+ xvbn + xv2cn)x
n

=
∑

n

(an − vbn + v2cn)x
n+1. (2.8)

Also, f(x)x =
∑

n(an + vbn + v2cn)x
n+1. This means that xf(x) = f(x)x, if

and only if bn = 0 for all n. On the other hand, since x2, v2x2 ∈ center(R), so

(Fp + v2Fp)[x
2] ⊆ center(R). This completes the proof. �

Corollary 2.7. xn − 1 ∈ center(R), if and only if n is even.

So if n is even, Rn = R
<xn−1> is a ring. Otherwise, Rn is just an R-module.

Proposition 2.8. Let I E Rn and n is even. If g ∈ I is the polynomial with

the least degree and the leading coefficient of g is a zero divisor, then all of its

coefficients are zero divisors.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
25

-0
8-

24
 ]

 

                             4 / 11

http://ijmsi.com/article-1-954-en.html


On skew cyclic codes over Fp + vFp + v2
Fp 139

Proof. Let g(x) =
∑m

n=0 gnx
n be the polynomial with the least degree. Assume

that gm is a zero divisor. So there exists h ∈ S such that hgm = 0. Since I is

an ideal, hg ∈ I and its degree is less than the degree of g. This contradicts

with the definition of g. So h ∈ Ann(gn) for 0 ≤ n ≤ m. �

The following example shows that R is not an Euclidean ring.

Example 2.9. Let f(x) = vx2 + 1, g(x) = vx. Then

f(x) =− xg(x) + 1

f(x) =− v2xg(x) + 1. (2.9)

It is clear that −x 6= −vx and deg(1) < deg(vx). So R is not Euclidean.

We know that being Euclidean is very useful in decoding process. Unfortu-

nately, R is not Euclidean, but we prove the following theorem to address this

problem.

Theorem 2.10. Let f, g ∈ R and g be a polynomial with unit leading coeffi-

cient. Then there exists unique q, r ∈ R such that f = qg + r and deg(r) <

deg(g).

Proof. The proof is similar to the one in [6] for Galois rings. Let f(x) =∑m

i=0 fix
i, g(x) =

∑k

i=0 gix
i. We will do it by induction. Let m = 0. Since

f(x) = f0 ∈ U(R), g(x) = g(x)f−1
0 f0 + 0. So assume that the result holds for

integers less than m. Then if h = f − fm
θm−k(gk)

xm−kg, deg(h) < deg(f). So

there exists q, r ∈ S such that h = qg + r and deg(r) < deg(g). This means

that

f = (
fm

θm−k(gk)
xm−k + q)g + r.

Now let f = q1g + r1 = q2g + r2. So (r1 − r2) = (q2 − q1)g. g is monic, so

deg(r1 − r2) = deg((q2 − q1)g) ≥ deg(g) > deg(r1) ≥ deg(r1 − r2). (2.10)

This is impossible and the proof is complete. �

Theorem 2.11. Let IER. Suppose that g ∈ I be the polynomial with the least

degree. If g is monic, then I = Rg.

Proof. Let f ∈ I. There exists q, r ∈ R such that f = qg + r, deg(r) < deg(g).

Since f, qg ∈ I, r ∈ I. This contradicts by the definition of g. �

Proposition 2.12. Let f ∈ R. Then there exists g ∈ R such that fv = vg.

Proof. Let f(x) =
∑

n fnx
n for some a, b, c ∈ Fp[x]. Then

fv = (
∑

n

fnx
n)v =

∑

n=2k

vfnx
n −

∑

n=2k+1

vfnx
n. (2.11)

So g(x) =
∑

n=2k fnx
n −

∑
n=2k+1 fnx

n. �
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Definition 2.13. The partaker of f ∈ R is the polynomial f ′ such that fv =

vf ′.

Next theorem gives a condition for the unit elements of R.

Theorem 2.14. Let f ∈ U(R). If f(x) =
∑

n(an+vbn+v2cn)x
n, then a0 6= 0

and an = 0, n > 0.

Proof. Let f ∈ U(R). If k(x) =
∑

n anx
n, g(x) =

∑
n bnx

n, h(x) =
∑

n cnx
n.

If f−1 = u+ vw + v2y, then

1 = (k + vg + v2h)(u+ vw + v2y) =ku+ v(k′w + gu+ gy + h′w)

+ v2(g′w + hy + gy + h′w). (2.12)

So k, u ∈ Fp which follows the result. �

Lemma 2.15. Let h ∈ S. Then there are three possible cases.

i) There exists t, s ∈ S such that th+ s(1− v2) = 1.

ii) 1− v|h.

iii) 1 + v|h.

Proof. Let h ∈ S. If 1− v ∤ h and 1 + v ∤ h, h1 − h2 + h3 6= 0. One can see
(
v2h−1

2 (v − (h1 + h3)h
−1
2 )(1− (h1 + h3)h

−1
2 )

)
(h1 + vh2 + vh3 )

+

(
(1− (h1 + h3)h

−1
2 ) + v2h−1

2 (v − (h1 + h3)h
−1
2 )(1− (h1 + h3)h

−1
2 )

)
(1− v2)

= 1. (2.13)

�

Theorem 2.16. Let I be an R-submodule of R. Suppose that there is no

monic polynomial in I of minimal degree and f(x) is a non-monic polynomial

in I of minimal degree. Let f = fmh for some monic polynomial h. Then

I ⊆ Rg +
∑

i Rbih for some bi ∈ S.

Proof. Let f(x) = f0 + f1x+ · · ·+ fmxm ∈ I be a non-monic polynomial in I

of minimal degree. Since there is no monic polynomial in I of minimal degree,

f(x) = fth for some monic polynomial h. If

Γ = {k ∈ I| deg(f) < deg(k) < deg(g)} (2.14)

is empty, there will be nothing to prove. Otherwise, let w(x) be the polynomial

with minimal degree k. First, let k −m is even. Then there are four cases.

a) There exists l, t ∈ R such that lwk + tfm = 1. Hence txm−kf + lw is

a polynomial in C with degree less than deg(g) and unit leading coefficient,

which is impossible.

b) There exists l, t ∈ R such that lfm = twk. So lxk−mf − tw has degree

less than deg(w). Hence, lxk−mf − tw = rf for some r ∈ R. Thus w = bh for

some b ∈ S.
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Now, assume that k ∈ I. There exists q, s ∈ R such that w = qg + s and

deg(s) < deg g. So there exists b ∈ R such that s = bh. So I ⊆ RG+
∑

i Rbih.

Second, assume that k − m is odd. It is enough to discuss the same cases

for θ(gm) instead of gm.

So if h ∈ I and h = qg + r where deg(r) < deg(g), then h = qg +
∑

i lif̂i.

Hence I = Sng +
∑

i Snf̂i. �

Corollary 2.17. Each submodule I of R is in only one of the following forms.

i) I = Rg, where g is the polynomial with the least degree and g is monic.

ii) I ⊆ Rg +
∑

i Rbih, where bi ∈ S and g be the monic polynomial with the

least degree.Also, if f is the polynomial with the least degree in I, there exists

t sich that th = f .

3. Skew Cyclic Codes over S

We know that each skew cyclic code is an R-submodule of Rn. So we try to

classify the codes with arbitrary length over S.

Theorem 3.1. C is an skew cyclic code with length n over S, if and only if C

is a submodule of Rn.

Proof. Let C be an skew cyclic code over S and c, d ∈ C. Let c(x) =
∑n−1

i=0 cix
i,

d(x) =
∑n−1

i=0 dix
i. Since C is a linear code, c+ d ∈ C. Also, xc ∈ C, because

C is cyclic. This means that f(x)c ∈ C for some f ∈ Rn. So C is a submodule.

Now assume that C is a submodule of Rn and c, d ∈ C. The definition of

submodule causes that c + d ∈ C, xc ∈ C. So C is an skew cyclic code over

S. �

Theorem 3.2. Let C be a code over S. Then C can be as only one of the

following form.

i) C = Rng,where g ∈ Rn is the polynomial with the least degree; also it is

monic and xn − 1 = gl for some l ∈ R.

ii) C ⊆ Rng+
∑

i
Rbih+<xn

−1>
<xn−1> , where g ∈ Rn is the monic polynomial with

the least degree; also f = fmh is the polynomial with the least degree and h is

monic.Moreover, xn − 1 = gl for some l ∈ R.

Proof. This is because of the fact that C is in the form of I
<xn−1> for some

I 6 R by correspondence theorem for modules. The rest is followed by theorem

2.17 and xn − 1 ∈ I. �

The following theorem shows a correspondence between skew cyclic codes

and quasi cyclic codes.

Theorem 3.3. Let n be odd and C be an skew cyclic code of length n. Then

C is equivalent to a cyclic code of length n over R.

Proof. It is similar to the proof of theorem 3.7 in [10]. �
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Lemma 3.4. Let g(x) ∈ R and g(x)h(x) = xn − 1 for some h ∈ R. Then

h(x)g(x) = xn − 1.

Proof. The proof is similar to the one in lemma 2 in [12]. �

Definition 3.5. Let X = (x1, x2, · · · , xn) and Y = (y1, · · · , yn) be a couple

of elements in Rn. The Euclidean and Hermitian inner products of X,Y are

defined as

< X,Y >E=
∑

i

xiyi (3.1)

< X,Y >H=
∑

i

xiθ(yi). (3.2)

Also, the Ecleadian dual code C⊥(C⊥H ) of C is

C⊥ ={x ∈ Rn|∀c ∈ C,< x, c >E= 0}

C⊥H ={x ∈ Rn|∀c ∈ C,< x, c >H= 0} (3.3)

Now we try to explain the encoding and decoding of principle codes.

Encoding of Principle Codes:

Let C =< g > and U = (u0, u2, · · · , uk−1) be the impute of the transmission.

Suppose that u(x) =
∑

i uix
i. To encode, we need to compute u(x)g(x) as

follows

[u0, u2, · · · , uk−1]×



g0 g1 g2 · · · gn−k−1 0 · · · 0

0 θ(g0) θ(g1) · · · θ(gn−k−2) θ(gn−k−1) · · · 0

0 0 θ2(g0) · · · θ(gn−k−3) θ(gn−k−2)
... 0

...
...

... · · ·

. . . · · ·

...
...

0 0 0 · · · θk−1(g0) · · · θk−1(gn−k−2) θk−1(gn−k−1)




k×n

= [v0, v1, · · · , vn−1]. (3.4)

Decoding of Principle Codes:
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Assume that Y = (y1, · · · , yn) is received through the channel. Suppose that

g(x)h(x) = xn − 1 and h(x) =
∑

i hix
i. To decode, first, we should compute




r0

r1
...

rn


 =




h0 h1 h2 · · · hk 0 · · · 0

0 θ(h0) θ(h1) · · · θ(hk−1) θ(hk) · · · 0

0 0 h0 · · · hk−2 hk−1

... 0
...

...
... · · ·

. . . · · ·

...
...

0 0 0 · · · θn−k−1(h0) · · · θn−k−1(gk−2) θn−k−1(hk)



×




y0

y1
...

yn




(3.5)

Then, we can check the vector [r1, · · · , rn]
T in the syndrome decoding table

and find the codeword.

Theorem 3.6. The minimum distance of C is equal to the maximum number
of dependent columns of the following matrix

H =



















h0 h1 h2 · · · hk 0 · · · 0

0 θ(h0) θ(h1) · · · θ(hk−1) θ(hk) · · · 0

0 0 h0 · · · hk−2 hk−1

.

.

. 0
.

.

.

.

.

.

.

.

. · · ·

.

.

. · · ·

.

.

.

.

.

.

0 0 0 · · · θn−k−1(h0) · · · θn−k−1(gk−2) θn−k−1(hk)



















n−k×n

(3.6)

Proof. Let Y is received. Assume that the error is not detectable. Assume

that the real input is L. So L + E = Y where E is the error vector. So

the error vector E with minimum weight, which is necessary for occurring a

non-detectable error satisfies (L + E)H = 0. Also, since L is the codeword,

LH = 0. This implies EH = 0. So if the non zero entries of E are the nonzero

coefficients of a linear combination of columns of H, a non detectable error

occures. This completes the proof. �
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