Iranian Journal of Mathematical Sciences and Informatics Vol. 12, No. 1 (2017), pp 153-161 DOI: 10.7508/ijmsi.2017.01.012

On Graded Weakly Classical Prime Submodules

Rashid Abu-Dawwas^{a,*}, Khaldoun Al-Zoubi^b

^aDepartment of Mathematics, Yarmouk University, Jordan. ^bDepartment of Mathematics and Statistics, Jordan University of Science and Technology, Jordan.

> E-mail: rrashid@yu.edu.jo E-mail: kfzoubi@just.edu.jo

ABSTRACT. Let R be a G-graded ring and M be a G-gr-R-module. In this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such a submodule.

Keywords: Graded prime submodules, Graded weakly classical prime submodules, Graded classical prime submodules.

2010 Mathematics subject classification: 13A02, 16W50.

1. INTRODUCTION

Gr-prime ideals of a commutative graded ring have been introduced and studied by Refai and Al-Zoubi in [14]. Gr-weakly prime ideals of a commutative graded ring have been introduced and studied by Atani in [4]. Gr-prime and grweakly prime submodules of graded modules over graded commutative rings have been studied by various authors; (see, for example [5, 6, 7, 12]). Gr-2-absorbing and gr-weakly 2-absorbing submodules have been studied by Al-Zoubi and Abu-Dawwas in [2]. Also, gr-classical prime submodules of graded modules over graded commutative rings have been introduced and studied by various authors; (see [3, 8]). Here we introduce the concept of graded weakly classical prime (gr-weakly classical prime) submodules. A number of results

^{*}Corresponding Author

Received 17 June 2016; Accepted 12 January 2017 © 2017 Academic Center for Education, Culture and Research TMU

concerning of gr-weakly classical prime submodules are given (see sec. 2).First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [9] and [10] for these basic properties and more information on graded rings and modules. Let G be a group with identity e. A ring R is said to be G-graded ring if there exist additive subgroups R_q of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. The elements of R_g are called homogeneous of degree g and R_e (the identity component of R) is a subring of R and $1 \in R_e$. For $x \in R$, x can be written uniquely as $\sum_{g \in G} x_g$ where x_g is the component of x in R_g . Also we write $h(R) = \bigcup_{g \in G} R_g$ and $supp(R,G) = \{g \in G : R_g \neq 0\}$. Let M be a left R - module. Then M is a G - graded R - module (shortly, M is gr-R- module) if there exist additive subgroups M_q of M indexed by the elements $g \in G$ such that $M = \bigoplus_{q \in G} M_q$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. The elements of M_g are called homogeneous of degree g. If $x \in M$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in M_g . Clearly, M_g is R_e - submodule of M for all $g \in G$. Also we write $h(M) = \bigcup_{g \in G} M_g$. and $supp(M, G) = \{g \in G : M_g \neq 0\}$. Let R be a G-graded ring and I be an ideal of R. Then I is called G-graded ideal if $I = \bigoplus_{g \in G} (I \cap R_g)$, i.e., if $x \in I$ and $x = \sum_{g \in G} x_g$, then $x_g \in I$ for all $g \in G$. An ideal of a G-graded ring need not be G-graded.

Let M be a G-gr-R-module and N be an R-submodule of M. Then N is called G-gr-R-submodule if $N = \bigoplus_{g \in G} (N \cap M_g)$, i.e., if $x \in N$ and $x = \sum_{g \in G} x_g$, then $x_g \in N$ for all $g \in G$. Also, an R-submodule of a G-graded R-module need not be G-graded.

Let R be a G-graded ring and M a graded R-module. A proper graded ideal P of R is said to be gr-prime (resp. gr-weakly prime) ideal if whenever $r, s \in h(R)$ with $rs \in P$ (resp. $0 \neq rs \in P$), then either $r \in P$ or $s \in P$. A proper graded submodule N of a graded module M is said to be gr-prime (resp. gr-weakly prime) submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $rm \in N$ (resp. $0 \neq rm \in N$), then either $r \in (N :_R M)$ or $m \in N$. A proper graded submodule N of M is called a gr-classical prime submodule if whenever $r, s \in h(R)$ and $m \in h(M)$ with $rsm \in N$, then either $rm \in N$ or $sm \in N$. Of course, every gr-prime submodule is a gr-classical prime submodule, but the converse is not true in general (see [3, Example 2.3]). The annihilator of graded R-module M which is denoted by $Ann_G(M)$ is (0:M). Furthermore, for every $m \in h(M)$, (0:m) is denoted by $Ann_G(m)$.

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. N is said to be graded weakly classical prime (gr-weakly classical prime) if whenever $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$, then either $am \in N$ or $bm \in N$.

Proposition 2.2. Let M be a gr-R-module and N be a gr-R-submodule of M. If (N : m) is a gr-weakly prime ideal of R for every $m \in h(M) - N$, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. If $m \in N$, then we are done. Suppose $m \notin N$. Then $0 \neq ab \in (N : m)$ and since (N : m) is a gr-weakly prime ideal, either $a \in (N : m)$ or $b \in (N : m)$ and then either $am \in N$ or $bm \in N$ and hence N is a gr-weakly classical prime R-submodule of M.

Proposition 2.3. Let M be a gr-R-module and N be a gr-R-submodule of M. If N is a gr-weakly classical prime R-submodule of M and $m \in h(M) - N$ such that $Ann_G(m) = 0$, then (N : m) is a gr-weakly prime ideal of R.

Proof. By [5, Lemma 2.1], (N : m) is a graded ideal of R. Let $a, b \in h(R)$ such that $0 \neq ab \in (N : m)$. Then since $Ann_G(m) = 0, 0 \neq abm \in N$ and since N is gr-weakly classical prime, either $am \in N$ or $bm \in N$ and then either $a \in (N : m)$ or $b \in (N : m)$. Hence, (N : m) is a gr-weakly prime ideal of R.

Let M and L be two gr-R-modules. A homomorphism of gr-R-module ϕ : $M \to L$ is a homomorphism of R-modules satisfying $\phi(M_g) \subseteq L_g$ for every $g \in G$ (see [10]).

Theorem 2.4. Let R be a G-graded ring and M, L be two gr-R-modules and $\phi : M \to L$ be an epimorphism of gr-modules. If N is a gr-weakly classical prime R-submodule of M containing Ker(f), then f(N) is a gr-weakly classical prime R-submodule of L.

Proof. First, we prove that f(N) is a graded R-submodule of L. Clearly, f(N)is an R-submodule of L. Let $y \in f(N)$. Then there exists $x \in N$ such that f(x) = y. Let $x = \sum_{i=1}^{n} x_{g_i}$ where $x_{g_i} \in M_{g_i} - 0, g_i \neq g_j$ for $i \neq j$. Then $y = \sum_{i=1}^{n} f(x_{g_i})$. For each $1 \leq i \leq n$, there exists $h_i \in supp(L,G)$ with $f(x_{g_i}) \in L_{h_i} - 0$ and $h_i \neq h_j$ for $i \neq j$. Let $h \in G$. If $h \neq h_i$ for all $1 \leq i \leq n$, then $y_h = 0 = f(0) \in f(N)$. If $h = h_i$ for some $1 \le i \le n$, then $y_h = f(x_{q_i})$. Since $x \in N$ and N is graded, $x_{q_i} \in N$ and then $y_h \in f(N)$. Hence, f(N) is a graded R-submodule of L. Secondly, we prove that $f(M_g) = L_g$ for all $g \in G$. Let $g \in G$ and let $r_g \in L_g$. If $r_g = 0$, then $r_g = 0 = f(0) \in f(M_g)$. Suppose $r_g \neq 0$. Since f is onto, there exists $x \in M - 0$ such that $f(x) = r_g$. Suppose $x = \sum_{i=1}^{n} x_{g_i}$ where $x_{g_i} \in M_{g_i} - 0$, $g_i \neq g_j$ for $i \neq j$. Then $r_g = \sum_{i=1}^{n} f(x_{g_i}) = \sum_{i=1}^{n} f(x_{g_i})$ $\sum_{i=1}^{k} f(x_{g_{t_i}})$ where $1 \leq t_i \leq n$ and $f(x_{g_{t_i}}) \neq 0$ for all $1 \leq i \leq k$. Since $f(x_{g_{t_i}}) \in L_{g_{t_i}}, r_g \in L_g \bigcap \sum_{i=1}^{k} L_{g_{t_i}}$. Thus, $g = g_{t_1} = \dots = g_{t_n}$ and hence k = 1 and $f(x_{g_{t_i}}) = f(x_g) = r_g$. So, $r_g \in f(M_g)$ and hence $L_g \subseteq f(M_g)$ and as $f(M_q) \subseteq L_q$, $f(M_q) = L_q$. Now, let $a, b \in h(R)$ and $s \in h(L)$ such that $0 \neq abs \in f(N)$. Since $s \in h(L)$, $s \in L_q$ for some $g \in G$ and since $L_q = f(M_q)$, there exists $m \in M_g \subseteq h(M)$ such that f(m) = s and then $0 \neq f(abm) \in f(N)$, it follows that there exists $n \in N \cap h(M)$ such that f(abm) = f(n) and then f(abm - n) = 0, so $abm - n \in Ker(f) \subseteq N$ and as $n \in N$, $0 \neq abm \in N$. Since N is gr-weakly classical prime, either $am \in N$ or $bm \in N$ and then either $as \in f(N)$ or $bs \in f(N)$. Hence, f(N) is a gr-weakly classical prime R-submodule of L.

Let M be a G-graded R-module and K be an R-submodule of M. Then M/K is a graded R-module by putting $(M/K)_q = (M_g + K)/K$.

Proposition 2.5. Let K and N be two graded proper R-submodules of a gr-R-module M such that $K \subset N$. If K is a gr-weakly classical prime R-submodule of M and N/K is a gr-weakly classical prime R-submodule of M/K, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. If $abm \in K$, then as K is gr-weakly classical prime, either $am \in K \subset N$ or $bm \in K \subset N$ and then we are done. Suppose $abm \notin K$. Since $m \in h(M)$, $m \in M_g$ for some $g \in G$ and then $m + K \in (M_g + K)/K = (M/K)_g \subseteq h(M/K)$. Now, $0 \neq ab(m + K) \in N/K$ and since N/K is gr-weakly classical prime, either $am + K \in N/K$ or $bm + K \in N/K$ and then either $am \in N$ or $bm \in N$. Hence, N is a gr-weakly classical prime R-submodule of M.

Proposition 2.6. Let N be a graded R-submodule of a gr-R-module M. If N is a gr-weakly prime R-submodule of M, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. Then since N is gr-weakly prime, either $bm \in N$ or $a \in (N : M)$. If $bm \in N$, then we are done. If $a \in (N : M)$, then $am \in N$. Hence, N is a gr-weakly classical prime R-submodule of M.

The concept of gr-2-absorbing submodules (respectively, gr-weakly 2-absorbing submodules) of a graded module over a commutative graded ring is studied in [2]. A graded proper *R*-submodule *N* of a gr-*R*-module *M* is said to be gr-2-absorbing (gr-weakly 2-absorbing) if whenever $a, b \in h(R)$ and $m \in h(M)$ such that $abm \in N$ ($0 \neq abm \in N$), then either $am \in N$, $bm \in N$ or $ab \in (N : M)$.

It is clear that if N is a gr-weakly classical prime R-submodule of M, then N is a gr-weakly 2-absorbing R-submodule of M. We introduce the following:

Proposition 2.7. If N is a gr-weakly 2-absorbing R-submodule of M and (N:M) is a gr-weakly prime ideal of R, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. Then since N is gr-weakly 2-absorbing, $am \in N$, $bm \in N$ or $ab \in (N : M)$. If $am \in N$

or $bm \in N$, then we are done. Suppose $ab \in (N : M)$. If ab = 0, then abm = 0 a contradiction. So, $0 \neq ab \in (N : M)$ and since (N : M) is gr-weakly prime, either $a \in (N : M)$ or $b \in (N : M)$ and then either $am \in aM \subseteq N$ or $bm \in bM \subseteq N$. Hence, N is a gr-weakly classical prime R-submodule of M.

Proposition 2.8. Let N be a graded R-submodule of a gr-R-module M. If N is a gr-weakly classical prime R-submodule of M, then N_g is a weakly classical prime R_e -submodule of M_q for all $g \in G$.

Proof. Let $g \in G$. Let $a, b \in R_e$ and $m \in M_g$ such that $0 \neq abm \in N_g$. Since $R_e \subseteq h(R)$ and $M_g \subseteq h(M)$, $a, b \in h(R)$ and $m \in h(M)$. Since $N_g \subseteq N$, $0 \neq abm \in N$ and since N is gr-weakly classical prime, either $am \in N$ or $bm \in N$. If $am \in N$, then $am \in R_e M_g \cap N \subseteq M_g \cap N = N_g$. Similarly, if $bm \in N$, then $bm \in N_g$. Hence, N_g is a weakly classical prime R_e -submodule of M_g .

Let M be an R-module and N be an R-submodule of M. Then for every $a \in R$, we define $(N :_M a) = \{m \in M : am \subseteq N\}$. it is easy to prove that $(N :_M a)$ is an R-submodule of M containing N. Moreover, it is easy top prove that if N is a graded R-submodule of a gr-R-module M, then $(N :_M a)$ is a graded R-submodule of M.

The next proposition gives a characterization for gr-weakly classical prime submodules.

Proposition 2.9. Let M be a gr-R-module and N be a graded R-submodule of M. Then N is a gr-weakly classical prime R-submodule of M if and only if $(N :_{h(M)} ab) = (0 :_{h(M)} ab) \bigcup (N :_{h(M)} a) \bigcup (N :_{h(M)} b)$ for all $a, b \in h(R)$.

Proof. Suppose N is a gr-weakly classical prime R-submodule of M. Let $a, b \in h(R)$ and let $m \in (N :_{h(M)} ab)$. Then $abm \in N$. If abm = 0, then $m \in (0 :_{h(M)} ab)$. Suppose $abm \neq 0$. Since N is gr-weakly classical prime, either $am \in N$ or $bm \in N$ and then either $m \in (N :_{h(M)} a)$ or $(N :_{h(M)} b)$. Conversely, Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. Then $m \in (N :_{h(M)} ab)$ and then by assumption, either $m \in (N :_{h(M)} a)$ or $m \in (N :_{h(M)} b)$ that is either $am \in N$ or $bm \in N$. Hence, N is a gr-weakly classical prime R-submodule of M. □

Similarly, we introduce the following:

Proposition 2.10. Let M be a gr-R-module and N be a graded R-submodule of M. If N is a gr-weakly classical prime R-submodule of M, then $(N :_{h(R)} abm) = (0 :_{h(R)} abm) \bigcup (N :_{h(R)} am) \bigcup (N :_{h(R)} bm)$ for all $a, b \in h(R)$ and $m \in h(M)$.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$. Assume that $r \in (N :_{h(R)} abm)$. Then $rabm \in N$. If rabm = 0, then $r \in (0 :_{h(R)} abm)$. Suppose $rabm \neq 0$. Then

 $0 \neq ab(rm) \in N$ and since N is gr-weakly classical prime, either $arm \in N$ or $brm \in N$ and then either $r \in (N :_{h(R)} am)$ or $r \in (N :_{h(R)} bm)$.

Theorem 2.11. Let M_1 , M_2 be two graded R-modules and N_1 be a proper graded R-submodule of M_1 . Then the following conditions are equivalent:

- (1) $N = N_1 \times M_2$ is a gr-weakly classical prime submodule of $M = M_1 \times M_2$.
- (2) N_1 is a gr-weakly classical prime submodule of M_1 and for each $a, b \in h(R)$ and $m_1 \in h(M_1)$ we have $abm_1 = 0, am_1 \notin N_1, bm_1 \notin N_1 \Rightarrow ab \in Ann_G(M_2)$.

Proof. (1) \Rightarrow (2) Suppose that $N = N_1 \times M_2$ is a gr-weakly classical prime submodule of $M = M_1 \times M_2$. Let $a, b \in h(R)$ and $m_1 \in h(M_1)$ be such that $0 \neq abm_1 \in N_1$. Then $(0,0) \neq ab(m_1,0) \in N$. Thus $a(m_1,0) \in N$ or $b(m_1,0) \in N$, and so $am_1 \in N_1$ or $bm_1 \in N_1$. Consequently N_1 is a grweakly classical prime submodule of M_1 . Now, assume that $abm_1 = 0$ for some $a, b \in h(R)$ and $m_1 \in h(M_1)$ such that $am_1 \notin N_1$ and $bm_1 \notin N_1$. Suppose that $ab \notin Ann_G(M_2)$. Therefore there exists $m_2 \in h(M_2)$ such that $abm_2 \neq 0$. Hence $(0,0) \neq ab(m_1,m_2) \in N$, and so $a(m_1,m_2) \in N$ or $b(m_1,m_2) \in N$. Thus $am_1 \in N_1$ or $bm_1 \in N_1$ which is a contradiction. Consequently $ab \in$ $Ann_G(M_2)$.

 $(2) \Rightarrow (1)$ Let $a, b \in h(R)$ and $(m_1, m_2) \in h(M) = h(M_1 \times M_2)$ be such that $(0,0) \neq ab(m_1, m_2) \in N = N_1 \times M_2$. First assume that $abm_1 \neq 0$. Then by part (2), $am_1 \in N_1$ or $bm_1 \in N_1$. So $a(m_1, m_2) \in N$ or $b(m_1, m_2) \in N$, and thus we are done. If $abm_1 = 0$, then $abm_2 \neq 0$. Therefore $ab \notin Ann_G(M_2)$, and so part (2) implies that either $am_1 \in N_1$ or $bm_1 \in N_1$. Again we have that $a(m_1, m_2) \in N$ or $b(m_1, m_2) \in N$ which shows N is a gr-weakly classical prime submodule of M.

The following two propositions have easy verifications.

Proposition 2.12. Let M_1, M_2 be two graded R-modules and N_1 be a proper graded R-submodule of M_1 . Then $N = N_1 \times M_2$ is a gr-classical prime submodule of $M = M_1 \times M_2$ if and only if N_1 is a gr-classical prime submodule of M_1 .

Proposition 2.13. Let M_1, M_2 be two graded R-modules and N_1, N_2 be two proper graded R-submodules of M_1, M_2 , respectively. If $N = N_1 \times N_2$ is a grweakly classical prime (resp. gr-classical prime) submodule of $M = M_1 \times M_2$, then N_1 is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_1 and N_2 is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_2 .

Let R_i be a commutative graded ring with unity and M_i be a graded R_i module, for i = 1, 2. Consider the graded ring $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is a graded *R*-module and each graded submodule of *M* is in the form of $N = N_1 \times N_2$ for some graded submodules N_1 of M_1 and N_2 of M_2 .

158

Theorem 2.14. Let $R = R_1 \times R_2$ be a graded ring and $M = M_1 \times M_2$ be a graded R-module where M_1 is a graded R_1 -module and M_2 is a graded R_2 module. Suppose that $N = N_1 \times M_2$ is a proper graded submodule of M. Then the following conditions are equivalent:

- (1) N_1 is a gr-classical prime submodule of M_1 ;
- (2) N is a gr-classical prime submodule of M;
- (3) N is a gr-weakly classical prime submodule of M.

Proof. (1) \Rightarrow (2) Let $(r_1, r_2)(s_1, s_2)(m_1, m_2) \in N$ for some $(r_1, r_2), (s_1, s_2) \in h(R)$ and $(m_1, m_2) \in h(M)$. Then $r_1s_1m_1 \in N_1$ so either $r_1m_1 \in N_1$ or $s_1m_1 \in N_1$ which shows that either $(r_1, r_2)(m_1, m_2) \in N$ or $(s_1, s_2)(m_1, m_2) \in N$. Consequently N is a gr-classical prime submodule of M.

 $(2) \Rightarrow (3)$ It is clear that every gr-classical prime submodule is a gr-weakly classical prime submodule.

(3) \Rightarrow (1) Let $rsm \in N_1$ for some $r, s \in h(R_1)$ and $m \in h(M_1)$. We may assume that $0 \neq m' \in h(M_2)$. Therefore $0 \neq (r, 1)(s, 1)(m, m') \in N$. So either $(r, 1)(m, m') \in N$ or $(s, 1)(m, m') \in N$. Therefore $rm \in N_1$ or $sm \in N_1$. Hence N_1 is a gr-classical prime submodule of M_1 .

Let R be a G-graded ring, M be a graded R-module and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1}R$ is a graded ring which is called graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in R, s \in S \text{ and } g = (\deg s)^{-1}(\deg r)\}$. The module of fraction $S^{-1}M$ over a graded ring $S^{-1}R$ is a graded module which is called module of fractions, if $S^{-1}M = \bigoplus_{g \in G} (S^{-1}M)_g$ where $(S^{-1}M)_g = \{m/s : m \in M, s \in S \text{ and } g = (\deg s)^{-1}(\deg m)\}$. We write $h(S^{-1}R) = \bigcup_{g \in G} (S^{-1}R)_g$ and $h(S^{-1}M) = \bigcup_{g \in G} (S^{-1}M)_g$, (see[10]).

A graded zero-divisor on a graded *R*-module *M* is an element $r \in h(R)$ for which there exists $m \in h(M)$ such that $m \neq 0$ but rm = 0. The set of all graded zero-divisors on *M* is denoted by $G - Zdv_R(M)$.

The following result studies the behavior of gr-weakly classical prime submodules under localization.

Proposition 2.15. Let R be a G-graded ring, M a graded R-module and $S \subseteq h(R)$ a multiplication closed subset of R. Then the following hold:

- (1) If N is a gr-weakly classical prime R-submodule of M and $(N:M) \bigcap S = \phi$, then $S^{-1}N$ is a gr-weakly classical prime R-submodule of $S^{-1}M$.
- (2) If $S^{-1}N$ is a gr-weakly classical prime R-submodule of $S^{-1}M$ such that $S \bigcap G Zdv_R(N) = \phi$ and $S \bigcap G Zdv_R(M/N) = \phi$, then N is a gr-weakly classical prime R-submodule of M.
- *Proof.* (1) Let N be a gr-weakly classical prime R-submodule of M and $(N:M) \bigcap S = \phi$. Suppose $0 \neq \frac{p}{r} \frac{q}{s} \frac{m}{t} \in S^{-1}N$ for some $\frac{p}{r}, \frac{q}{s} \in h(S^{-1}R)$

and for some $\frac{m}{t} \in h(M)$. Then there exists $u \in S$ such that $upqm \in N$. If upqm = 0, then $\frac{p}{r} \frac{q}{s} \frac{m}{t} = \frac{upqm}{urst} = \frac{0}{1}$ a contradiction. Since N is grweakly classical prime and $0 \neq upqm \in N$, we conclude that either $pum \in N$ or $qum \in N$. So, $\frac{p}{r} \frac{m}{t} = \frac{upm}{urt} \in S^{-1}N$ or $\frac{q}{s} \frac{m}{t} = \frac{uqm}{ust} \in S^{-1}N$. Thus $S^{-1}N$ is a gr-weakly classical prime R-submodule of $S^{-1}M$.

(2) Suppose $S^{-1}N$ is a gr-weakly classical prime *R*-submodule of $S^{-1}M$ such that $S \bigcap G - Zdv_R(N) = \phi$ and $S \bigcap G - Zdv_R(M/N) = \phi$. Let $p, q \in h(R)$ and $m \in h(M)$ such that $0 \neq pqm \in N$. Then $\frac{p}{1}\frac{q}{1}\frac{m}{1} \in S^{-1}N$. If $\frac{p}{1}\frac{q}{1}\frac{m}{1} = 0$, then there exists $u \in S$ such that upqm = 0 that contradicts $S \bigcap G - Zdv_R(N) = \phi$. Since $S^{-1}N$ is a gr-weakly classical prime *R*-submodule of $S^{-1}M$ and $0 \neq \frac{p}{1}\frac{q}{1}\frac{m}{1} \in S^{-1}N$, we conclude that either $\frac{p}{1}\frac{m}{1} \in S^{-1}N$ or $\frac{q}{1}\frac{m}{1} \in S^{-1}N$. If $\frac{p}{1}\frac{m}{1} \in S^{-1}N$, then there exists $s \in S$ such that $spm \in N$ and since $S \bigcap G - Zdv_R(M/N) = \phi$, $pm \in N$. Similarly, If $\frac{q}{1}\frac{m}{1} \in S^{-1}N$, then $qm \in N$. Therefore, N is a gr-weakly classical prime *R*-submodule of M.

Theorem 2.16. Let R be a G-graded ring, M a graded R-module and N a gr-weakly classical prime submodule of M. Then for each $g \in M_g$, either N_g is a classical prime R_e -submodule of M_g or $(N_g :_{R_e} M_g)^2 N_g = 0$.

Proof. By Proposition 2.8, N_q is a weakly classical prime R_e -submodule of M_q for every $g \in M_q$. It is enough to show that if $(N_q :_{R_e} M_q)^2 N_q \neq 0$ for some $g \in G$, then N_g is a classical prime R_e -submodule of M_g . Let $rsm \in N_g$ where $r, s \in R_e$ and $m \in M_g$. If $rsm \neq 0$, then either $rm \in N_g$ or $sm \in N_g$ since N_g is a weakly classical prime R_e -submodule of M_g . So suppose that rsm = 0. If $rsN_q \neq 0$, then there is an element $n \in N_q$ such that $rsn \neq 0$ 0, so $0 \neq rs(m+n) = rsn \in N_g$, so we conclude that $r(m+n) \in N_g$ or $s(m+n) \in N_g$. Thus $rm \in N_g$ or $sm \in N_g$. So we can assume that $rsN_g =$ 0. If $r(N_g :_{R_e} M_g)m \neq 0$ then there is an element $w \in (N_g :_{R_e} M_g)$ such that $rwm \neq 0$. Then $r(s+w)m \neq 0$ because rsm = 0. Since $wm \in N_g$, $r(s+w)m \in N_q$. Then $rm \in N_q$ or $(s+w)m \in N_q$. Hence $rm \in N_q$ or $sm \in N_g$. So we can assume that $r(N_g :_{R_e} M_g)m = 0$. Similarly, we can assume that $s(N_g:_{R_e} M_g)m = 0$. If $r(N_g:_{R_e} M_g)N_g \neq 0$, then $rka \neq 0$ for some $k \in (N_g :_{R_e} M_g)$ and $a \in N_g$. Since $rsN_g = 0$ and $r(N_g :_{R_e} M_g)m = 0$, we conclude that $0 \neq r(s+k)(m+a) = rka \in N_g$. So $r(m+a) \in N_g$ or $(s+k)(m+a) \in N_g$. Hence $rm \in N_g$ or $sm \in N_g$. So we can assume that $r(N_q :_{R_e} M_q)N_q = 0$. Similarly, we can assume that $s(N_q :_{R_e} M_q)N_q = 0$. Since we assume that $(N_g :_{R_e} M_g)^2 N_g \neq 0$, there are $r_1, r_2 \in (N_g :_{R_e} M_g)$ and $t \in N_g$ such that $r_1r_2t \neq 0$. Then $(r+r_1)(s+r_2)(m+t) = r_1r_2t \in N_g$. So $(r+r_1)(m+t) \in N_g$ or $(s+r_2)(m+t) \in N_g$. Hence $rm \in N_g$ or $sm \in N_g$. Thus N_q is a classical prime R_e -submodule of M_q

Acknowledgments

The authors are very grateful and thankful to the referees for the comments and suggestions that surely make the article better.

References

- R. Abu-Dawwas, K. Al-Zoubi, M. Bataineh, Prime submodules of graded modules, Proyecciones Journal of Mathematics, 31(4), (2012), 355-361.
- K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, *Journal of Mathematical Sciences: Advances and Applications*, 28, (2014), 45-60.
- K. Al-Zoubi, M. Jaradat, R. Abu-Dawwas, On graded classical prime and graded prime submodules, *Bulletin of the Iranian Mathematical Society*, 41(1), (2015), 217-225.
- S. Ebrahimi Atani, On graded weakly prime ideals, *Turkish Journal of Mathematics*, 30, (2006), 351-358.
- S. Ebrahimi Atani, On graded prime submodules, *Chiang Mai Jornal of Science*, 33(1), (2006), 3–7.
- S. Ebrahimi Atani, On graded weakly prime submodules, International Mathematical Forum, 1(2), (2006), 61-66.
- S.E Atani, F. Farzalipour, Notes on the graded prime submodules, *International Mathematical Forum*, 1(38), (2006), 1871–1880.
- 8. S. Motmaen, On graded classical prime submodules, Second Seminar on Algebra and its Applications, 83-86, August 30-September 1, University of Mohaghegh Ardabili, 2012.
- 9. C. Nastasescu, F. Van Oystaeyen, *Graded ring theory*, Mathematical Library 28, North Holland, Amesterdam, 1982.
- C. Nastasescu, V.F. Oystaeyen, *Methods of Graded Rings*, LNM 1836, Berlin-Heidelberg: Springer-Verlag, 2004.
- R. J. Nezhad, The dual of a strongly prime ideal, Iranian Journal of Mathematical Sciences and Informatics, 5 (1), (2010), 19–26.
- K.H Oral , U. Tekir and Agargun A.G., On Graded prime and primary submodules, *Turkish Journal of Mathematics*, 35, (2011), 159–167.
- Sh. Payrovi, S. Babaei, On the 2-absorbing submodules, Iranian Journal of Mathematical Sciences and Informatics, 10 (1), (2015), 131–137.
- M. Refai, K. Al-Zoubi, On graded primary ideals, *Turkish Journal of Mathematics*, 28, (2004), 217–229.