On Graded Weakly Classical Prime Submodules

Rashid Abu-Dawwas ${ }^{a, *}$, Khaldoun Al-Zoubi ${ }^{b}$
${ }^{a}$ Department of Mathematics, Yarmouk University, Jordan.
${ }^{b}$ Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan.
\[\begin{aligned} \& E-mail: rrashid@yu.edu.jo
\& E-mail: kfzoubi@just.edu.jo \end{aligned} \]

> Abstract. Let R be a G-graded ring and M be a G-gr- R-module. In this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such a submodule.

Keywords: Graded prime submodules, Graded weakly classical prime submodules, Graded classical prime submodules.

2010 Mathematics subject classification: 13A02, 16 W 50.

1. Introduction

Gr-prime ideals of a commutative graded ring have been introduced and studied by Refai and Al-Zoubi in [14]. Gr-weakly prime ideals of a commutative graded ring have been introduced and studied by Atani in [4]. Gr-prime and grweakly prime submodules of graded modules over graded commutative rings have been studied by various authors; (see, for example [5, 6, 7, 12]). Gr2 -absorbing and gr-weakly 2 -absorbing submodules have been studied by AlZoubi and Abu-Dawwas in [2]. Also, gr-classical prime submodules of graded modules over graded commutative rings have been introduced and studied by various authors; (see [3, 8]). Here we introduce the concept of graded weakly classical prime (gr-weakly classical prime) submodules. A number of results

[^0]concerning of gr-weakly classical prime submodules are given (see sec. 2). First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [9] and [10] for these basic properties and more information on graded rings and modules. Let G be a group with identity e. A ring R is said to be G-graded ring if there exist additive subgroups R_{g} of R such that $R=\oplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The elements of R_{g} are called homogeneous of degree g and R_{e} (the identity component of $R)$ is a subring of R and $1 \in R_{e}$. For $x \in R, x$ can be written uniquely as $\sum_{g \in G} x_{g}$ where x_{g} is the component of x in R_{g}. Also we write $h(R)=\cup_{g \in G} R_{g}$ and $\operatorname{supp}(R, G)=\left\{g \in G: R_{g} \neq 0\right\}$. Let M be a left R-module. Then M is a G - graded R - module (shortly, M is $g r$-R- module) if there exist additive subgroups M_{g} of M indexed by the elements $g \in G$ such that $M=\oplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. The elements of M_{g} are called homogeneous of degree g. If $x \in M$, then x can be written uniquely as $\sum_{g \in G} x_{g}$, where x_{g} is the component of x in M_{g}. Clearly, M_{g} is R_{e} - submodule of M for all $g \in G$. Also we write $h(M)=\cup_{g \in G} M_{g}$. and $\operatorname{supp}(M, G)=\left\{g \in G: M_{g} \neq 0\right\}$. Let R be a G-graded ring and I be an ideal of R. Then I is called G-graded ideal if $I=\oplus_{g \in G}\left(I \cap R_{g}\right)$, i.e., if $x \in I$ and $x=\sum_{g \in G} x_{g}$, then $x_{g} \in I$ for all $g \in G$. An ideal of a G-graded ring need not be G-graded.

Let M be a G-gr- R-module and N be an R-submodule of M. Then N is called G-gr- R-submodule if $N=\oplus_{g \in G}\left(N \cap M_{g}\right)$, i.e., if $x \in N$ and $x=$ $\sum_{g \in G} x_{g}$, then $x_{g} \in N$ for all $g \in G$. Also, an R-submodule of a G-graded R-module need not be G-graded.

Let R be a G-graded ring and M a graded R-module. A proper graded ideal P of R is said to be gr-prime (resp. gr-weakly prime) ideal if whenever $r, s \in h(R)$ with $r s \in P($ resp. $0 \neq r s \in P)$, then either $r \in P$ or $s \in P$. A proper graded submodule N of a graded module M is said to be gr-prime (resp. gr-weakly prime) submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $r m \in N(\operatorname{resp} .0 \neq r m \in N)$, then either $r \in\left(N:_{R} M\right)$ or $m \in N$. A proper graded submodule N of M is called a gr-classical prime submodule if whenever $r, s \in h(R)$ and $m \in h(M)$ with $r s m \in N$, then either $r m \in N$ or $s m \in N$. Of course, every gr-prime submodule is a gr-classical prime submodule, but the converse is not true in general (see [3, Example 2.3]). The annihilator of graded R-module M which is denoted by $\operatorname{Ann}_{G}(M)$ is $(0: M)$. Furthermore, for every $m \in h(M),(0: m)$ is denoted by $A n n_{G}(m)$.

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of $M . N$ is said to be graded weakly classical prime (gr-weakly classical prime) if whenever $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$, then either $a m \in N$ or $b m \in N$.

Proposition 2.2. Let M be a gr-R-module and N be a gr-R-submodule of M. If $(N: m)$ is a gr-weakly prime ideal of R for every $m \in h(M)-N$, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$. If $m \in N$, then we are done. Suppose $m \notin N$. Then $0 \neq a b \in(N: m)$ and since $(N: m)$ is a gr-weakly prime ideal, either $a \in(N: m)$ or $b \in(N: m)$ and then either $a m \in N$ or $b m \in N$ and hence N is a gr-weakly classical prime R-submodule of M.

Proposition 2.3. Let M be a gr- R-module and N be a gr-R-submodule of M. If N is a gr-weakly classical prime R-submodule of M and $m \in h(M)-N$ such that $A n n_{G}(m)=0$, then $(N: m)$ is a gr-weakly prime ideal of R.

Proof. By [5, Lemma 2.1], $(N: m)$ is a graded ideal of R. Let $a, b \in h(R)$ such that $0 \neq a b \in(N: m)$. Then since $A n n_{G}(m)=0,0 \neq a b m \in N$ and since N is gr-weakly classical prime, either $a m \in N$ or $b m \in N$ and then either $a \in(N: m)$ or $b \in(N: m)$. Hence, $(N: m)$ is a gr-weakly prime ideal of R.

Let M and L be two gr- R-modules. A homomorphism of gr- R-module ϕ : $M \rightarrow L$ is a homomorphism of R-modules satisfying $\phi\left(M_{g}\right) \subseteq L_{g}$ for every $g \in G($ see [10]).

Theorem 2.4. Let R be a G-graded ring and M, L be two gr- R-modules and $\phi: M \rightarrow L$ be an epimorphism of gr-modules. If N is a gr-weakly classical prime R-submodule of M containing $\operatorname{Ker}(f)$, then $f(N)$ is a gr-weakly classical prime R-submodule of L.

Proof. First, we prove that $f(N)$ is a graded R-submodule of L. Clearly, $f(N)$ is an R-submodule of L. Let $y \in f(N)$. Then there exists $x \in N$ such that $f(x)=y$. Let $x=\sum_{i=1}^{n} x_{g_{i}}$ where $x_{g_{i}} \in M_{g_{i}}-0, g_{i} \neq g_{j}$ for $i \neq j$. Then $y=\sum_{i=1}^{n} f\left(x_{g_{i}}\right)$. For each $1 \leq i \leq n$, there exists $h_{i} \in \operatorname{supp}(L, G)$ with $f\left(x_{g_{i}}\right) \in L_{h_{i}}-0$ and $h_{i} \neq h_{j}$ for $i \neq j$. Let $h \in G$. If $h \neq h_{i}$ for all $1 \leq i \leq n$, then $y_{h}=0=f(0) \in f(N)$. If $h=h_{i}$ for some $1 \leq i \leq n$, then $y_{h}=f\left(x_{g_{i}}\right)$. Since $x \in N$ and N is graded, $x_{g_{i}} \in N$ and then $y_{h} \in f(N)$. Hence, $f(N)$ is a graded R-submodule of L. Secondly, we prove that $f\left(M_{g}\right)=L_{g}$ for all $g \in G$. Let $g \in G$ and let $r_{g} \in L_{g}$. If $r_{g}=0$, then $r_{g}=0=f(0) \in f\left(M_{g}\right)$. Suppose $r_{g} \neq 0$. Since f is onto, there exists $x \in M-0$ such that $f(x)=r_{g}$. Suppose $x=\sum_{i=1}^{n} x_{g_{i}}$ where $x_{g_{i}} \in M_{g_{i}}-0, g_{i} \neq g_{j}$ for $i \neq j$. Then $r_{g}=\sum_{i=1}^{n} f\left(x_{g_{i}}\right)=$ $\sum_{i=1}^{k} f\left(x_{g_{t_{i}}}\right)$ where $1 \leq t_{i} \leq n$ and $f\left(x_{g_{t_{i}}}\right) \neq 0$ for all $1 \leq i \leq k$. Since $f\left(x_{g_{t_{i}}}\right) \in L_{g_{t_{i}}}, r_{g} \in L_{g} \bigcap \sum_{i=1}^{k} L_{g_{t_{i}}}$. Thus, $g=g_{t_{1}}=\ldots \ldots . .=g_{t_{n}}$ and hence $k=1$ and $f\left(x_{g_{t_{i}}}\right)=f\left(x_{g}\right)=r_{g}$. So, $r_{g} \in f\left(M_{g}\right)$ and hence $L_{g} \subseteq f\left(M_{g}\right)$ and as $f\left(M_{g}\right) \subseteq L_{g}, f\left(M_{g}\right)=L_{g}$. Now, let $a, b \in h(R)$ and $s \in h(L)$ such that $0 \neq a b s \in f(N)$. Since $s \in h(L), s \in L_{g}$ for some $g \in G$ and since $L_{g}=f\left(M_{g}\right)$,
there exists $m \in M_{g} \subseteq h(M)$ such that $f(m)=s$ and then $0 \neq f(a b m) \in f(N)$, it follows that there exists $n \in N \cap h(M)$ such that $f(a b m)=f(n)$ and then $f(a b m-n)=0$, so $a b m-n \in \operatorname{Ker}(f) \subseteq N$ and as $n \in N, 0 \neq a b m \in N$. Since N is gr-weakly classical prime, either $a m \in N$ or $b m \in N$ and then either as $f(N)$ or $b s \in f(N)$. Hence, $f(N)$ is a gr-weakly classical prime R-submodule of L.

Let M be a G-graded R-module and K be an R-submodule of M. Then M / K is a graded R-module by putting $(M / K)_{g}=\left(M_{g}+K\right) / K$.
Proposition 2.5. Let K and N be two graded proper R-submodules of a gr- R module M such that $K \subset N$. If K is a gr-weakly classical prime R-submodule of M and N / K is a gr-weakly classical prime R-submodule of M / K, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$. If $a b m \in K$, then as K is gr-weakly classical prime, either $a m \in K \subset N$ or $b m \in K \subset N$ and then we are done. Suppose $a b m \notin K$. Since $m \in h(M), m \in M_{g}$ for some $g \in G$ and then $m+K \in\left(M_{g}+K\right) / K=(M / K)_{g} \subseteq h(M / K)$. Now, $0 \neq a b(m+K) \in N / K$ and since N / K is gr-weakly classical prime, either $a m+K \in N / K$ or $b m+K \in N / K$ and then either $a m \in N$ or $b m \in N$. Hence, N is a gr-weakly classical prime R-submodule of M.

Proposition 2.6. Let N be a graded R-submodule of a gr-R-module M. If N is a gr-weakly prime R-submodule of M, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$. Then since N is gr-weakly prime, either $b m \in N$ or $a \in(N: M)$. If $b m \in N$, then we are done. If $a \in(N: M)$, then $a m \in N$. Hence, N is a gr-weakly classical prime R-submodule of M.

The concept of gr-2-absorbing submodules (respectively, gr-weakly 2-absorbing submodules) of a graded module over a commutative graded ring is studied in [2]. A graded proper R-submodule N of a gr- R-module M is said to be gr-2absorbing (gr-weakly 2-absorbing) if whenever $a, b \in h(R)$ and $m \in h(M)$ such that $a b m \in N(0 \neq a b m \in N)$, then either $a m \in N, b m \in N$ or $a b \in(N: M)$.

It is clear that if N is a gr-weakly classical prime R-submodule of M, then N is a gr-weakly 2 -absorbing R-submodule of M. We introduce the following:

Proposition 2.7. If N is a gr-weakly 2-absorbing R-submodule of M and $(N: M)$ is a gr-weakly prime ideal of R, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$. Then since N is gr-weakly 2-absorbing, $a m \in N, b m \in N$ or $a b \in(N: M)$. If $a m \in N$
or $b m \in N$, then we are done. Suppose $a b \in(N: M)$. If $a b=0$, then $a b m=0$ a contradiction. So, $0 \neq a b \in(N: M)$ and since $(N: M)$ is gr-weakly prime, either $a \in(N: M)$ or $b \in(N: M)$ and then either $a m \in a M \subseteq N$ or $b m \in b M \subseteq N$. Hence, N is a gr-weakly classical prime R-submodule of M.

Proposition 2.8. Let N be a graded R-submodule of a gr-R-module M. If N is a gr-weakly classical prime R-submodule of M, then N_{g} is a weakly classical prime R_{e}-submodule of M_{g} for all $g \in G$.
Proof. Let $g \in G$. Let $a, b \in R_{e}$ and $m \in M_{g}$ such that $0 \neq a b m \in N_{g}$. Since $R_{e} \subseteq h(R)$ and $M_{g} \subseteq h(M), a, b \in h(R)$ and $m \in h(M)$. Since $N_{g} \subseteq N$, $0 \neq a b m \in N$ and since N is gr-weakly classical prime, either $a m \in N$ or $b m \in N$. If $a m \in N$, then $a m \in R_{e} M_{g} \bigcap N \subseteq M_{g} \bigcap N=N_{g}$. Similarly, if $b m \in N$, then $b m \in N_{g}$. Hence, N_{g} is a weakly classical prime R_{e}-submodule of M_{g}.

Let M be an R-module and N be an R-submodule of M. Then for every $a \in R$, we define $\left(N:_{M} a\right)=\{m \in M: a m \subseteq N\}$. it is easy to prove that ($N:_{M} a$) is an R-submodule of M containing N. Moreover, it is easy top prove that if N is a graded R-submodule of a gr- R-module M, then ($N:_{M} a$) is a graded R-submodule of M.

The next proposition gives a characterization for gr-weakly classical prime submodules.

Proposition 2.9. Let M be a gr-R-module and N be a graded R-submodule of M. Then N is a gr-weakly classical prime R-submodule of M if and only if $\left(N:_{h(M)} a b\right)=\left(0:_{h(M)} a b\right) \bigcup\left(N:_{h(M)} a\right) \bigcup\left(N:_{h(M)} b\right)$ for all $a, b \in h(R)$.
Proof. Suppose N is a gr-weakly classical prime R-submodule of M. Let $a, b \in$ $h(R)$ and let $m \in\left(N:_{h(M)} a b\right)$. Then $a b m \in N$. If $a b m=0$, then $m \in\left(0:_{h(M)}\right.$ $a b)$. Suppose $a b m \neq 0$. Since N is gr-weakly classical prime, either $a m \in N$ or $b m \in N$ and then either $m \in\left(N:_{h(M)} a\right)$ or $\left(N:_{h(M)} b\right)$. Conversely, Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq a b m \in N$. Then $m \in\left(N:_{h(M)} a b\right)$ and then by assumption, either $m \in\left(N:_{h(M)} a\right)$ or $m \in\left(N:_{h(M)} b\right)$ that is either $a m \in N$ or $b m \in N$. Hence, N is a gr-weakly classical prime R submodule of M.

Similarly, we introduce the following:
Proposition 2.10. Let M be a gr-R-module and N be a graded R-submodule of M. If N is a gr-weakly classical prime R-submodule of M, then $\left(N:_{h(R)}\right.$ $a b m)=\left(0:_{h(R)}\right.$ abm $) \bigcup\left(N:_{h(R)}\right.$ am $) \bigcup\left(N:_{h(R)} b m\right)$ for all $a, b \in h(R)$ and $m \in h(M)$.
Proof. Let $a, b \in h(R)$ and $m \in h(M)$. Assume that $r \in\left(N:_{h(R)} a b m\right)$. Then $r a b m \in N$. If rabm $=0$, then $r \in\left(0:_{h(R)} a b m\right)$. Suppose $r a b m \neq 0$. Then
$0 \neq a b(r m) \in N$ and since N is gr-weakly classical prime, either arm $\in N$ or $b r m \in N$ and then either $r \in\left(N:_{h(R)} a m\right)$ or $r \in\left(N:_{h(R)} b m\right)$.
Theorem 2.11. Let M_{1}, M_{2} be two graded R-modules and N_{1} be a proper graded R-submodule of M_{1}. Then the following conditions are equivalent:
(1) $N=N_{1} \times M_{2}$ is a gr-weakly classical prime submodule of $M=M_{1} \times M_{2}$.
(2) N_{1} is a gr-weakly classical prime submodule of M_{1} and for each $a, b \in$ $h(R)$ and $m_{1} \in h\left(M_{1}\right)$ we have $a b m_{1}=0, a m_{1} \notin N_{1}, b m_{1} \notin N_{1} \Rightarrow a b \in$ $A n n_{G}\left(M_{2}\right)$.
Proof. (1) \Rightarrow (2) Suppose that $N=N_{1} \times M_{2}$ is a gr-weakly classical prime submodule of $M=M_{1} \times M_{2}$. Let $a, b \in h(R)$ and $m_{1} \in h\left(M_{1}\right)$ be such that $0 \neq a b m_{1} \in N_{1}$. Then $(0,0) \neq a b\left(m_{1}, 0\right) \in N$. Thus $a\left(m_{1}, 0\right) \in N$ or $b\left(m_{1}, 0\right) \in N$, and so $a m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$. Consequently N_{1} is a grweakly classical prime submodule of M_{1}. Now, assume that $a b m_{1}=0$ for some $a, b \in h(R)$ and $m_{1} \in h\left(M_{1}\right)$ such that $a m_{1} \notin N_{1}$ and $b m_{1} \notin N_{1}$. Suppose that $a b \notin A n n_{G}\left(M_{2}\right)$. Therefore there exists $m_{2} \in h\left(M_{2}\right)$ such that $a b m_{2} \neq 0$. Hence $(0,0) \neq a b\left(m_{1}, m_{2}\right) \in N$, and so $a\left(m_{1}, m_{2}\right) \in N$ or $b\left(m_{1}, m_{2}\right) \in N$. Thus $a m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$ which is a contradiction. Consequently $a b \in$ $A n n_{G}\left(M_{2}\right)$.
$(2) \Rightarrow(1)$ Let $a, b \in h(R)$ and $\left(m_{1}, m_{2}\right) \in h(M)=h\left(M_{1} \times M_{2}\right)$ be such that $(0,0) \neq a b\left(m_{1}, m_{2}\right) \in N=N_{1} \times M_{2}$. First assume that $a b m_{1} \neq 0$. Then by part (2), am $m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$. So $a\left(m_{1}, m_{2}\right) \in N$ or $b\left(m_{1}, m_{2}\right) \in N$, and thus we are done. If $a b m_{1}=0$, then $a b m_{2} \neq 0$. Therefore $a b \notin \operatorname{Ann}_{G}\left(M_{2}\right)$, and so part (2) implies that either $a m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$. Again we have that $a\left(m_{1}, m_{2}\right) \in N$ or $b\left(m_{1}, m_{2}\right) \in N$ which shows N is a gr-weakly classical prime submodule of M.

The following two propositions have easy verifications.
Proposition 2.12. Let M_{1}, M_{2} be two graded R-modules and N_{1} be a proper graded R-submodule of M_{1}. Then $N=N_{1} \times M_{2}$ is a gr-classical prime submodule of $M=M_{1} \times M_{2}$ if and only if N_{1} is a gr-classical prime submodule of M_{1}.

Proposition 2.13. Let M_{1}, M_{2} be two graded R-modules and N_{1}, N_{2} be two proper graded R-submodules of M_{1}, M_{2}, respectively. If $N=N_{1} \times N_{2}$ is a grweakly classical prime (resp. gr-classical prime) submodule of $M=M_{1} \times M_{2}$, then N_{1} is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_{1} and N_{2} is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_{2}.

Let R_{i} be a commutative graded ring with unity and M_{i} be a graded R_{i} module, for $i=1,2$. Consider the graded ring $R=R_{1} \times R_{2}$. Then $M=$ $M_{1} \times M_{2}$ is a graded R-module and each graded submodule of M is in the form of $N=N_{1} \times N_{2}$ for some graded submodules N_{1} of M_{1} and N_{2} of M_{2}.

Theorem 2.14. Let $R=R_{1} \times R_{2}$ be a graded ring and $M=M_{1} \times M_{2}$ be a graded R-module where M_{1} is a graded R_{1}-module and M_{2} is a graded R_{2} module. Suppose that $N=N_{1} \times M_{2}$ is a proper graded submodule of M. Then the following conditions are equivalent:
(1) N_{1} is a gr-classical prime submodule of M_{1};
(2) N is a gr-classical prime submodule of M;
(3) N is a gr-weakly classical prime submodule of M.

Proof. (1) \Rightarrow (2) Let $\left(r_{1}, r_{2}\right)\left(s_{1}, s_{2}\right)\left(m_{1}, m_{2}\right) \in N$ for some $\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right) \in$ $h(R)$ and $\left(m_{1}, m_{2}\right) \in h(M)$. Then $r_{1} s_{1} m_{1} \in N_{1}$ so either $r_{1} m_{1} \in N_{1}$ or $s_{1} m_{1} \in N_{1}$ which shows that either $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in N$ or $\left(s_{1}, s_{2}\right)\left(m_{1}, m_{2}\right) \in$ N. Consequently N is a gr-classical prime submodule of M.
$(2) \Rightarrow(3)$ It is clear that every gr-classical prime submodule is a gr-weakly classical prime submodule.
(3) \Rightarrow (1) Let $r s m \in N_{1}$ for some $r, s \in h\left(R_{1}\right)$ and $m \in h\left(M_{1}\right)$. We may assume that $0 \neq m^{\prime} \in h\left(M_{2}\right)$. Therefore $0 \neq(r, 1)(s, 1)\left(m, m^{\prime}\right) \in N$. So either $(r, 1)\left(m, m^{\prime}\right) \in N$ or $(s, 1)\left(m, m^{\prime}\right) \in N$. Therefore $r m \in N_{1}$ or $s m \in N_{1}$. Hence N_{1} is a gr-classical prime submodule of M_{1}.

Let R be a G-graded ring, M be a graded R-module and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1} R$ is a graded ring which is called graded ring of fractions. Indeed, $S^{-1} R=\underset{g \in G}{\oplus}\left(S^{-1} R\right)_{g}$ where $\left(S^{-1} R\right)_{g}=\left\{r / s: r \in R, s \in S\right.$ and $\left.g=(\operatorname{deg} s)^{-1}(\operatorname{deg} r)\right\}$. The module of fraction $S^{-1} M$ over a graded ring $S^{-1} R$ is a graded module which is called module of fractions, if $S^{-1} M=\underset{g \in G}{\oplus}\left(S^{-1} M\right)_{g}$ where $\left(S^{-1} M\right)_{g}=\{m / s: m \in$ $M, s \in S$ and $\left.g=(\operatorname{deg} s)^{-1}(\operatorname{deg} m)\right\}$. We write $h\left(S^{-1} R\right)=\underset{g \in G}{\cup}\left(S^{-1} R\right)_{g}$ and $h\left(S^{-1} M\right)=\underset{g \in G}{\cup}\left(S^{-1} M\right)_{g},(\operatorname{see}[10])$.

A graded zero-divisor on a graded R-module M is an element $r \in h(R)$ for which there exists $m \in h(M)$ such that $m \neq 0$ but $r m=0$. The set of all graded zero-divisors on M is denoted by $G-Z d v_{R}(M)$.

The following result studies the behavior of gr-weakly classical prime submodules under localization.
Proposition 2.15. Let R be a G-graded ring, M a graded R-module and $S \subseteq$ $h(R)$ a multiplication closed subset of R. Then the following hold:
(1) If N is a gr-weakly classical prime R-submodule of M and $(N: M) \bigcap S=$ ϕ, then $S^{-1} N$ is a gr-weakly classical prime R-submodule of $S^{-1} M$.
(2) If $S^{-1} N$ is a gr-weakly classical prime R-submodule of $S^{-1} M$ such that $S \bigcap G-Z d v_{R}(N)=\phi$ and $S \bigcap G-Z d v_{R}(M / N)=\phi$, then N is a gr-weakly classical prime R-submodule of M.
Proof. (1) Let N be a gr-weakly classical prime R-submodule of M and $(N: M) \bigcap S=\phi$. Suppose $0 \neq \frac{p}{r} \frac{q}{s} \frac{m}{t} \in S^{-1} N$ for some $\frac{p}{r}, \frac{q}{s} \in h\left(S^{-1} R\right)$
and for some $\frac{m}{t} \in h(M)$. Then there exists $u \in S$ such that upqm $\in N$. If upqm $=0$, then $\frac{p}{r} \frac{q}{s} \frac{m}{t}=\frac{u p q m}{u r s t}=\frac{0}{1}$ a contradiction. Since N is grweakly classical prime and $0 \neq u p q m \in N$, we conclude that either $p u m \in N$ or $q u m \in N$. So, $\frac{p}{r} \frac{m}{t}=\frac{u p m}{u r t} \in S^{-1} N$ or $\frac{q}{s} \frac{m}{t}=\frac{u q m}{u s t} \in S^{-1} N$. Thus $S^{-1} N$ is a gr-weakly classical prime R-submodule of $S^{-1} M$.
(2) Suppose $S^{-1} N$ is a gr-weakly classical prime R-submodule of $S^{-1} M$ such that $S \bigcap G-Z d v_{R}(N)=\phi$ and $S \bigcap G-Z d v_{R}(M / N)=\phi$. Let $p, q \in h(R)$ and $m \in h(M)$ such that $0 \neq p q m \in N$. Then $\frac{p}{1} \frac{q}{1} \frac{m}{1} \in$ $S^{-1} N$. If $\frac{p}{1} \frac{q}{1} \frac{m}{1}=0$, then there exists $u \in S$ such that upqm $=0$ that contradicts $S \bigcap G-Z d v_{R}(N)=\phi$. Since $S^{-1} N$ is a gr-weakly classical prime R-submodule of $S^{-1} M$ and $0 \neq \frac{p}{1} \frac{q}{1} \frac{m}{1} \in S^{-1} N$, we conclude that either $\frac{p}{1} \frac{m}{1} \in S^{-1} N$ or $\frac{q}{1} \frac{m}{1} \in S^{-1} N$. If $\frac{p}{1} \frac{m}{1} \in S^{-1} N$, then there exists $s \in S$ such that $s p m \in N$ and since $S \bigcap G-Z d v_{R}(M / N)=\phi, p m \in N$. Similarly, If $\frac{q}{1} \frac{m}{1} \in S^{-1} N$, then $q m \in N$. Therefore, N is a gr-weakly classical prime R-submodule of M.

Theorem 2.16. Let R be a G-graded ring, M a graded R-module and $N a$ gr-weakly classical prime submodule of M. Then for each $g \in M_{g}$, either N_{g} is a classical prime R_{e}-submodule of M_{g} or $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g}=0$.

Proof. By Proposition 2.8, N_{g} is a weakly classical prime R_{e}-submodule of M_{g} for every $g \in M_{g}$. It is enough to show that if $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g} \neq 0$ for some $g \in G$, then N_{g} is a classical prime R_{e}-submodule of M_{g}. Let $r s m \in N_{g}$ where $r, s \in R_{e}$ and $m \in M_{g}$. If $r s m \neq 0$, then either $r m \in N_{g}$ or $s m \in N_{g}$ since N_{g} is a weakly classical prime R_{e}-submodule of M_{g}. So suppose that $r s m=0$. If $r s N_{g} \neq 0$, then there is an element $n \in N_{g}$ such that $r s n \neq$ 0 , so $0 \neq r s(m+n)=r s n \in N_{g}$, so we conclude that $r(m+n) \in N_{g}$ or $s(m+n) \in N_{g}$. Thus $r m \in N_{g}$ or $s m \in N_{g}$. So we can assume that $r s N_{g}=$ 0 . If $r\left(N_{g}:_{R_{e}} M_{g}\right) m \neq 0$ then there is an element $w \in\left(N_{g}:_{R_{e}} M_{g}\right)$ such that $r w m \neq 0$. Then $r(s+w) m \neq 0$ because $r s m=0$. Since $w m \in N_{g}$, $r(s+w) m \in N_{g}$. Then $r m \in N_{g}$ or $(s+w) m \in N_{g}$. Hence $r m \in N_{g}$ or $s m \in N_{g}$. So we can assume that $r\left(N_{g}:_{R_{e}} M_{g}\right) m=0$. Similarly, we can assume that $s\left(N_{g}:_{R_{e}} M_{g}\right) m=0$. If $r\left(N_{g}:_{R_{e}} M_{g}\right) N_{g} \neq 0$, then $r k a \neq 0$ for some $k \in\left(N_{g}:_{R_{e}} M_{g}\right)$ and $a \in N_{g}$. Since $r s N_{g}=0$ and $r\left(N_{g}:_{R_{e}} M_{g}\right) m=0$, we conclude that $0 \neq r(s+k)(m+a)=r k a \in N_{g}$. So $r(m+a) \in N_{g}$ or $(s+k)(m+a) \in N_{g}$. Hence $r m \in N_{g}$ or $s m \in N_{g}$. So we can assume that $r\left(N_{g}:_{R_{e}} M_{g}\right) N_{g}=0$. Similarly, we can assume that $s\left(N_{g}:_{R_{e}} M_{g}\right) N_{g}=0$. Since we assume that $\left(N_{g}:_{R_{e}} M_{g}\right)^{2} N_{g} \neq 0$, there are $r_{1}, r_{2} \in\left(N_{g}:_{R_{e}} M_{g}\right)$ and $t \in N_{g}$ such that $r_{1} r_{2} t \neq 0$. Then $\left(r+r_{1}\right)\left(s+r_{2}\right)(m+t)=r_{1} r_{2} t \in N_{g}$. So $\left(r+r_{1}\right)(m+t) \in N_{g}$ or $\left(s+r_{2}\right)(m+t) \in N_{g}$. Hence $r m \in N_{g}$ or $s m \in N_{g}$. Thus N_{g} is a classical prime R_{e}-submodule of M_{g}

Acknowledgments

The authors are very grateful and thankful to the referees for the comments and suggestions that surely make the article better.

References

1. R. Abu-Dawwas, K. Al-Zoubi, M. Bataineh, Prime submodules of graded modules, Proyecciones Journal of Mathematics, 31(4), (2012), 355-361.
2. K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, Journal of Mathematical Sciences: Advances and Applications, 28, (2014), 45-60.
3. K. Al-Zoubi, M. Jaradat, R. Abu-Dawwas, On graded classical prime and graded prime submodules, Bulletin of the Iranian Mathematical Society, 41(1), (2015), 217-225.
4. S. Ebrahimi Atani, On graded weakly prime ideals, Turkish Journal of Mathematics, 30, (2006), 351-358.
5. S. Ebrahimi Atani, On graded prime submodules, Chiang Mai Jornal of Science, 33(1), (2006), 3-7.
6. S. Ebrahimi Atani, On graded weakly prime submodules, International Mathematical Forum, 1(2), (2006), 61-66.
7. S.E Atani, F. Farzalipour, Notes on the graded prime submodules, International Mathematical Forum, 1(38), (2006), 1871-1880.
8. S. Motmaen, On graded classical prime submodules, Second Seminar on Algebra and its Applications, 83-86, August 30-September 1, University of Mohaghegh Ardabili, 2012.
9. C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holland, Amesterdam, 1982.
10. C. Nastasescu, V.F. Oystaeyen, Methods of Graded Rings, LNM 1836, Berlin-Heidelberg: Springer-Verlag, 2004.
11. R. J. Nezhad, The dual of a strongly prime ideal, Iranian Journal of Mathematical Sciences and Informatics, 5 (1), (2010), 19-26.
12. K.H Oral , U. Tekir and Agargun A.G., On Graded prime and primary submodules, Turkish Journal of Mathematics, 35, (2011), 159-167.
13. Sh. Payrovi, S. Babaei, On the 2-absorbing submodules, Iranian Journal of Mathematical Sciences and Informatics, 10 (1), (2015), 131-137.
14. M. Refai, K. Al-Zoubi, On graded primary ideals, Turkish Journal of Mathematics, 28, (2004), 217-229.

[^0]: * Corresponding Author

 Received 17 June 2016; Accepted 12 January 2017
 © 2017 Academic Center for Education, Culture and Research TMU

