Domination and Signed Domination Number of Cayley Graphs

Ebrahim Vatandoost, Fatemeh Ramezani*
Department of Basic Science, Imam Khomeini International University, Qazvin, Iran.
E-mail: vatandoost@sci.ikiu.ac.ir
E-mail: ramezani@ikiu.ac.ir

Abstract. In this paper, we investigate domination number as well as signed domination numbers of Cayley$(G:S)$ for all cyclic group G of order n, where $n \in \{p^m, pq\}$ and $S = \{k < n : \gcd(k, n) = 1\}$. We also introduce some families of connected regular graphs Γ such that $\gamma_S(\Gamma) \in \{2, 3, 4, 5\}$.

Keywords: Cayley graph, Cyclic group, Domination number, Signed domination number.

2000 Mathematics subject classification: 05C69, 05C25

1. Introduction

By a graph Γ we mean a simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. A graph is said to be connected if each pair of vertices are joined by a walk. The number of edges of the shortest walk joining v_i and v_j is called the distance between v_i and v_j and denoted by $d(v_i, v_j)$. A graph Γ is said to be regular of degree k or, k-regular if every vertex has degree k. A subset P of vertices of Γ is a k-packing if $d(x, y) > k$ for all pairs of distinct vertices x and y of P [9].

*Corresponding Author

Received 20 April 2016; Accepted 14 January 2017
©2019 Academic Center for Education, Culture and Research TMU
Let G be a non-trivial group, S be an inverse closed subset of G which does not contain the identity element of G, i.e. $S = S^{-1} = \{s^{-1} : s \in S\}$. The Cayley graph of G denoted by $\text{Cay}(G : S)$, is a graph with vertex set G and two vertices a and b are adjacent if and only if $ab^{-1} \in S$. The Cayley graph $\text{Cay}(G : S)$ is connected if and only if S generates G.

A set $D \subseteq V$ of vertices in a graph Γ is a dominating set if every vertex $v \in V$ is an element of D or adjacent to an element of D. The domination number $\gamma(\Gamma)$ of a graph Γ is the minimum cardinality of a dominating set of Γ.

For a vertex $v \in V(\Gamma)$, the closed neighborhood $N[v]$ of v is the set consisting v and all of its neighbors. For a function $f : V(\Gamma) \to \{-1, 1\}$ and a subset W of V we define $f(W) = \sum_{u \in W} f(u)$. A signed dominating function of Γ is a function $f : V(\Gamma) \to \{-1, 1\}$ such that $f(N[v]) > 0$ for all $v \in V(\Gamma)$. The weight of a function f is $\omega(f) = \sum_{v \in V} f(v)$. The signed domination number $\gamma_s(\Gamma)$ is the minimum weight of a signed dominating function of Γ. A signed dominating function of weight $\gamma_s(\Gamma)$ is called a $\gamma_s(\Gamma)$–function. We denote $f(N[v])$ by $[v]$. Also for $A \subseteq V(\Gamma)$ and signed dominating function f, set $\{v \in A : f(v) = -1\}$ is denoted by $A_f^−$.

Finding some kinds of domination numbers of graphs is certainly one of the most important properties in any graph. (See for instance [2, 3, 5, 6, 11, 13])

These motivated us to consider on domination and signed domination number of Cayley graphs of cyclic group of orders p^n, pq, where p and q are prime numbers.

2. Cayley Graphs of Order p^n

In this section p is a prime number and $B(1, n) = \{k < n : \gcd(k, n) = 1\}$.

Lemma 2.1. Let G be a group and H be a proper subgroup of G such that $[G : H] = t$. If $S = G \setminus H$, then $\text{Cay}(G : S)$ is a complete t-partite graph.

Proof. One can see $G = \langle S \rangle$ and $e \notin S = S^{-1}$. Let $a \in G$. If $x, y \in Ha$, then $x = h_1a, y = h_2a$. Since $xy^{-1} \in H$, $xy \notin E(\text{Cay}(G : S))$. So induced subgraph on every coset of H is empty. Let Ha and Hb two disjoint cosets of H and $x \in Ha, y \in Hb$. Hence, $xy^{-1} \in S$. So $xy \in E(\text{Cay}(G : S))$. Therefore, $\text{Cay}(G : S) = K_{|H|, |H|, \ldots, |H|}$.

Lemma 2.2. Let G be a group of order n and $G = \langle S \rangle$, where $S = S^{-1}$ and $0 \notin S$. Then $\gamma(\text{Cay}(G : S)) = 1$ if and only if $S = G \setminus \{0\}$.

Proof. The proof is straightforward.
Theorem 2.3. \[13\] Let \(K_{a,b}\) be a complete bipartite graph with \(b \leq a\). Then
\[
\gamma_s(K_{a,b}) = \begin{cases}
 a + 1 & \text{if } b = 1, \\
 b & \text{if } 2 \leq b \leq 3 \text{ and } a \text{ is even}, \\
 b + 1 & \text{if } 2 \leq b \leq 3 \text{ and } a \text{ is odd}, \\
 4 & \text{if } b \geq 4 \text{ and } b \text{ is even}, \\
 6 & \text{if } b \geq 4 \text{ and } b \text{ is odd}, \\
 5 & \text{if } b \geq 4 \text{ and } a, b \text{ have different parity.}
\end{cases}
\]

Theorem 2.4. Let \(\mathbb{Z}_{2^n} = \langle S \rangle\) and \(S = B(1, 2^n)\). Then
i. \(\text{Cay}(\mathbb{Z}_{2^n} : S) = K_{2^{n-1}, 2^{n-1}}\)
ii. \(\gamma(\text{Cay}(\mathbb{Z}_{2^n} : S)) = 2\).
iii. \(\gamma_S(\text{Cay}(\mathbb{Z}_{2^n} : S)) = \begin{cases}
 2 & \text{if } n = 1, 2, \\
 4 & \text{if } n \geq 3.
\end{cases}\)

Proof. i. Let \(H = \mathbb{Z}_{2^n} \setminus S\). Then \(H = \{i : 2 \mid i\}\). It is not hard to see that \(H\) is a subgroup of \(\mathbb{Z}_{2^n}\) and \([\mathbb{Z}_{2^n} : H] = 2\). Hence, by Lemma 2.1, \(\text{Cay}(\mathbb{Z}_{2^n} : S) = K_{2^{n-1}, 2^{n-1}}\).
ii. By part i. \(\text{Cay}(\mathbb{Z}_{2^n} : S)\) is a complete bipartite graph. So \(\gamma(\text{Cay}(\mathbb{Z}_{2^n} : S)) = 2\).
iii. The proof is straightforward by Theorem 2.3.

\(\square\)

Corollary 2.5. For any integer \(n > 2\), there is a \(2^{n-1}\)-regular graph \(\Gamma\) with \(2^n\) vertices such that \(\gamma_s(\Gamma) = 4\).

Theorem 2.6. Let \(\mathbb{Z}_{p^n} = \langle S \rangle\) (\(p\) odd prime) and \(S = B(1, p^n)\). Then following statements hold:

i. \(\text{Cay}(\mathbb{Z}_{p^n} : S)\) is a complete \(p\)-partite graph.

ii. \(\gamma(\text{Cay}(\mathbb{Z}_{p^n} : S)) = 2\).

iii. \(\gamma_s(\text{Cay}(\mathbb{Z}_{p^n} : S)) = 3\).

Proof. i. Let \(H = \mathbb{Z}_{p^n} \setminus S\). Then \(H = \{i : p \mid i\}\). \(H\) is a subgroup of \(\mathbb{Z}_{p^n}\) and \(|H| = p^n - \Phi(p^n) = p^{n-1}\). So \([\mathbb{Z}_{p^n} : H] = p\). Hence, by Lemma 2.1, \(\text{Cay}(\mathbb{Z}_{p^n} : S)\) is a complete \(p\)-partite graph of size \(p^{n-1}\).

ii. Since \(\text{Cay}(\mathbb{Z}_{p^n} : S)\) is a complete \(p\)-partite graph, \(D = \{a, b\}\) is a minimal dominating set where \(a, b\) are not in the same partition.

iii. Let \(\Gamma = \text{Cay}(\mathbb{Z}_{p^n} : S)\). Let \(V(\Gamma) = \bigcup_{i=1}^{p} A_i\) where \(A_i = \{v_{ij} : 1 \leq j \leq p^{n-1}\}\). Define \(f : V(\Gamma) \to \{-1, 1\}\)
\[
f(v_{ij}) = \begin{cases}
 -1 & \text{if } 1 \leq i \leq \left[\frac{p}{2} \right] \text{ and } 1 \leq j \leq \left[\frac{p^{n-1}}{2} \right], \\
 -1 & \text{if } \left[\frac{p}{2} \right] \leq i \leq p \text{ and } 1 \leq j \leq \left[\frac{p^{n-1}}{2} \right], \\
 1 & \text{otherwise.}
\end{cases}
\]
Let \(v \in \bigcup_{i=1}^{\lfloor \frac{p}{2} \rfloor - 1} A_i \). So \(|\mathcal{N}(v) \cap V_j^-| = \frac{1}{2}(p^n - p^{n-1} - 4)\). So \(f[v] = f(v) + 4 \geq 3\). If \(v \in \bigcup_{i=1}^{p} A_i \), then \(|\mathcal{N}(v) \cap V_j^-| = \frac{1}{2}(p^n - p^{n-1} - 2)\).

So \(f[v] = f(v) + 2 \geq 1\). Hence, \(f \) is a signed dominating function. Since \(|V_j^-| = \frac{1}{2}(p^n - 3)\), \(\omega(f) = 3\). So \(\gamma_S(\Gamma) \leq 3\). On the contrary, suppose \(\gamma_S(\Gamma) < 3\). So there is a \(\gamma_S \)-function \(g \) such that \(\omega(g) < 3\). So \(|V_j^-| > \frac{1}{2}(p^n - 3)\). Let \(|V_j^-| = \frac{1}{2}(p^n - 1)\). If \(A_i \cap V_j^- = \emptyset \) for some \(1 \leq i \leq p \), then \(g[v] = 1 - p^{n-1} \) for every \(v \in A_i \). Hence, \(A_i \cap V_j^- \neq \emptyset \) for every \(1 \leq i \leq p \). If \(|A_i \cap V_j^-| \geq \lceil \frac{p^{n-1}}{2} \rceil \) for every \(1 \leq i \leq p \), then \(|V_j^-| \geq \frac{1}{2}(p^n + p)\). This is impossible. So there is \(j \in \{1, 2, \ldots, p\} \) such that \(|A_j \cap V_j^-| \leq \lceil \frac{p^{n-1}}{2} \rceil \). Let \(u \in A_j \cap V_j^-\). So \(g[u] = \deg(u) + 1 - 2|\mathcal{N}(u) \cap V_j^-| < 0\). This is contradiction. Therefore \(\gamma_S(\Gamma) = 3\).

\[\square \]

Corollary 2.7. For every integer \(n \), there is a \((p^n - p^{n-1})\)-regular graph \(\Gamma \) with \(p^n \) vertices such that \(\gamma_S(\Gamma) = 3\).

3. \textbf{Cayley Graphs of Order} \(pq \)

In this section \(p \) and \(q \) are distinct prime numbers where \(p < q \). Let \(B(1, pq) \) be a generator of \(\mathbb{Z}_{pq} \). For \(1 \leq i \leq p \) and \(1 \leq j \leq q \), set

\[A_i = \{i + kp: 0 \leq k \leq q - 1\} \]

and

\[B_j = \{j + k'q: 0 \leq k' \leq p - 1\} \]

With these notations in mind we will prove the following results.

Lemma 3.1. Let \(\mathbb{Z}_{pq} = \langle S \rangle \) and \(S = B(1, pq) \). Then following statements hold.

i. \(V(\text{Cay}(\mathbb{Z}_{pq}: S)) = \bigcup_{i=1}^{p} A_i \) and \(\text{Cay}(\mathbb{Z}_{pq}: S) \) is a \(p \)-partite graph.

ii. \(V(\text{Cay}(\mathbb{Z}_{pq}: S)) = \bigcup_{j=1}^{q} B_j \) and \(\text{Cay}(\mathbb{Z}_{pq}: S) \) is a \(q \)-partite graph.

iii. Let \(1 \leq i \leq p \). For any \(x \in A_i \) there is some \(1 \leq j \leq q \) such that \(x \in B_j \).

iv. \(|A_i \cap B_j| = 1\) for every \(i, j \).

Proof.

i. Let \(s \in V(\text{Cay}(\mathbb{Z}_{pq}: S)) \). If \(p \mid s \), then \(s \in A_p \). Otherwise, \(s \in A_i \) where \(s = kp + i \) for some \(1 \leq k \leq (p - 1) \). Thus \(V(\text{Cay}(\mathbb{Z}_{pq}: S)) = \bigcup_{i=1}^{p} A_i \). Since \(1 \leq i \neq j \leq p \), \(A_i \cap A_j = \emptyset \). We show that the
induced subgraph on A_i is empty. Let $l + t \in E(Cay(Z_{pq} : S))$. If $l, t \in A_i$ for some $1 \leq s \leq p$, then $l = s + kp, t = s + k'p$. So $p \mid (l - t)$. This is impossible.

ii. The proof is likewise part i.

iii. Let $1 \leq i \leq p$ and let $x \in A_i$. If $x \leq q$, then $x \in B_x$. If not, $x = i + kp > q$ such that $1 \leq k \leq q - 1$. Hence, $x \equiv t \pmod{q}$ where $1 \leq t \leq q$, and so $x \in B_t$.

iv. By Case iii and since $|A_i| = q$ and also for every $j \neq j'$, $B_j \cap B_{j'} = \emptyset$, the result reaches.

\square

Theorem 3.3. [6] For any graph Γ, \[\frac{n}{\Delta(\Gamma)} \leq \gamma(\Gamma) \leq n - \Delta(\Gamma) \] where $\Delta(\Gamma)$ is the maximum degree of Γ.

Theorem 3.3. Let $Z_{pq} = \langle S \rangle$ and $S = B(1, pq)$. Then the following is hold.

\[\gamma(Cay(Z_{pq} : S)) = \begin{cases} 2 & p = 2; \\ 3 & p > 2. \end{cases} \]

Proof. Let $p = 2$. By Lemma 3.1, $D = \{i, i + q\}$ is a dominating set. Since $Cay(Z_{pq} : S)$ is a $(q - 1)$-regular graph, by Theorem 3.2, $\gamma(Cay(Z_{pq} : S)) \geq 2$. Thus $\gamma(Cay(Z_{pq} : S)) = 2$.

Let $p > 2$. We define $D = \{1, 2, s\}$ where $s \in A_1 \setminus N(2)$. Since $1, 2$ are adjacent, $N(1) \cup N(2) = V(Cay(Z_{pq} : S)) \setminus D$. Thus D is a dominating set. As a consequence, $\gamma(Cay(Z_{pq} : S)) \leq 2$. It is enough to show that $\gamma(Cay(Z_{pq} : S)) \neq 2$. Let $D' = \{x, y\}$. We show that D' is not a dominating set. If $x, y \in A_1$ for some $1 \leq i \leq p$, then for every $z \in A_1 \setminus D', z \notin N(D')$. If not, $x \in A_i$ and $y \in A_j$ for some $1 \leq i \neq j \leq p$. If x, y are adjacent, then there is $x' \in A_i \setminus \{x\}$ such that $x' \notin N(y)$. Thus D' is not dominating set. If x and y are not adjacent, then there is $z \in A_2, l \neq i, j$, such that the induced subgraph on $\{x, y, z\}$ is empty. Hence, D' is not a dominating set and the proof is completed.

\square

Theorem 3.4. Let $Z_{pq} = \langle S \rangle$ where $p \in \{2, 3, 5\}$ and $S = B(1, pq)$. Then

\[\gamma_s(Cay(Z_{pq} : S)) = p. \]

Proof. Let $A = \{1, 1 + p, \ldots, 1 + (\frac{q}{2} - 1)p\}$ and $B = \{i + tq : i \in A \text{ and } 1 \leq t \leq p - 1\}$. We define $f : V(Cay(Z_{pq} : S)) \to \{-1, 1\}$ such that

\[f(x) = \begin{cases} -1 & x \in A \cup B, \\ 1 & \text{otherwise}. \end{cases} \]

Let $v \in V(Cay(Z_{pq} : S))$. If $f(v) = -1$, then

\[f[v] = -1 + (p - 1)(q - 1) - 2 \left(\left(\frac{q}{2}\right) - 1\right) (p - 1) = 2p - 3. \]
Otherwise,
\[f[v] = 1 + (p - 1)(q - 1) - 2 \left\lfloor \frac{q}{2} \right\rfloor (p - 1) = 1. \]
Hence, \(f \) is a dominating function. Also
\[\omega(f) = pq - 2(|A| + |B|) = pq - 2 \left(\left\lfloor \frac{q}{2} \right\rfloor + (p - 1) \left\lceil \frac{q}{2} \right\rceil \right) = p. \]

It is enough to show that \(f \) has the minimal wait. Let, to the contrary, \(g \) be a dominating function and \(\omega(g) < \omega(f) \). So \(|V_g^-| > |V_f^-| \). Without lose of generality, suppose that \(|V_g^-| = p\left\lfloor \frac{q}{2} \right\rfloor + 1 \). Let \(A_i^- = A_i \cap V_g^- \), \(A_i^+ = A_i \setminus A_i^- \) and \(B_j^- = B_j \cap V_g^- \). We will reach the contradiction by three steps.

Step 1. For every \(1 \leq i \leq p, A_i^- \neq \emptyset \).
On the contrary, let \(A_i^- = \emptyset \) for some \(1 \leq s \leq p \). Let \(u \in A_s \). Then by Lemma 3.1, \(u \in A_s \cap B_t \) for some \(1 \leq t \leq q \). So
\[g[u] = (p - 1)(q - 1) + 1 - 2(|V_g^-| - |B_t^+|) \geq 1. \]
Thus \(|B_t^+| \geq \left\lceil \frac{q}{2} \right\rceil \). Hence, \(|V_g^-| \geq |A_s|\left\lceil \frac{q}{2} \right\rceil \). This implies \(q + (q-p)\left\lceil \frac{q}{2} \right\rceil < 1 \). This is a contradiction. Hence, \(A_i^- \neq \emptyset \).
Similar argument applies for \(B_j \). Therefore, \(B_j^- \neq \emptyset \) for every \(1 \leq j \leq q \).

Step 2. For every \(1 \leq i \leq p, |A_i^-| \geq \left\lceil \frac{q}{2} \right\rceil \).
On the contrary, Let \(|A_i^-| < \left\lceil \frac{q}{2} \right\rceil \) for some \(1 \leq l \leq p \). Without lose of generality suppose that \(|A_i^-| = \left\lfloor \frac{q}{2} \right\rfloor - 1 \). Let \(v \in A_i \). By Lemma 3.1, \(v \in A_i \cap B_k \) for some \(1 \leq k \leq q \). If \(g(v) = -1 \), then \(g[v] = (p - 1)(q - 1) - 1 - 2(|V_g^-| - |A_i^-| - |B_k^-| + 2) \geq 1 \). Then \(|B_k^- \setminus \{v\}| \geq 4 \). If \(g(v) = 1 \), then \(|B_k^- \setminus \{v\}| \geq 2 \). Hence, \(|V_g^-| \geq 4|A_i^-| + |A_i^+| + 2|A_i^-| \).
As a consequence \(p > 8 \). This is impossible.
Therefore, for every \(1 \leq i \leq p, |A_i^-| \geq \left\lfloor \frac{q}{2} \right\rceil \) and since \(|V_g^-| = p\left\lfloor \frac{q}{2} \right\rceil + 1 \), we may suppose that \(|A_i^-| = \left\lfloor \frac{q}{2} \right\rceil \) and \(|A_i^-| = \left\lceil \frac{q}{2} \right\rceil \) for \(2 \leq i \leq p \).

Step 3. For every \(1 \leq j \leq q, |B_j^-| \geq \left\lceil \frac{q}{2} \right\rceil \).
On the contrary, let \(|B_k^-| < \left\lceil \frac{q}{2} \right\rceil \) for some \(1 \leq h \leq q \). Suppose that \(|B_k^-| = \left\lfloor \frac{q}{2} \right\rceil \). By Lemma 3.1, \(B_k \cap A_i \neq \emptyset \) for any \(1 \leq i \leq p \). Let \(z \in B_k \cap A_i \).
\[g[z] = -1 + (p - 1)(q - 1) - 2(|V_g^-| - |A_i^-| - |B_k^-| + 2) \leq -1 + (p - 1)(q - 1) - 2 \left(p \left\lfloor \frac{q}{2} \right\rceil + 1 - \left\lfloor \frac{q}{2} \right\rceil - \left\lceil \frac{p}{2} \right\rceil + 2 \right) \leq p - 6 \]

Since \(p \in \{2, 3, 5\} \), \(g[z] \leq -1 \). This is a contradiction.
By Step 3, \(|V_g^-| \geq q\left\lfloor \frac{p}{2} \right\rceil \). Hence, \(p\left\lfloor \frac{p}{2} \right\rceil + 1 \geq q\left\lceil \frac{p}{2} \right\rceil \). So \(p + q \leq 2 \). This is impossible. Therefore \(\gamma_s(Cay(G : S)) = \omega(f) = p. \)

Theorem 3.5. Let \(\mathbb{Z}_{pq} = \langle S \rangle \) where \(p \geq 7 \) and \(S = B(1, pq) \). Then
\[\gamma_s(Cay(\mathbb{Z}_{pq} : S)) = 5. \]
Proof. We define $f: V(Cay(Z_{pq}, S)) \rightarrow \{-1, 1\}$ such that $f(i) = -1$ if and only if $i \in \{1, 2, \ldots, \frac{pq-5}{2}\}$. It is easily seen that $\lfloor \frac{q}{2} \rfloor \leq |A^-_i| \leq \lfloor \frac{q}{2} \rfloor$ for every $1 \leq i \leq p$. Also $\lfloor \frac{q}{2} \rfloor \leq |B^-_j| \leq \lfloor \frac{q}{2} \rfloor$ for any $1 \leq j \leq q$. Let $v \in A_i \cap B_j$, such that $1 \leq t \leq p$ and $1 \leq s \leq q$. In the worst situation, $|A^-_i| = \lfloor \frac{q}{2} \rfloor$ and $|B^-_j| = \lfloor \frac{q}{2} \rfloor$. In this case $1 \leq f[v] \leq 5$. Hence, f is a signed dominating function. Also $\omega(f) = pq - 2|V_f^-| = 5$. Thus $\gamma_S(Cay(Z_{pq}, S)) \leq 5$. What is left is to show that if g is a γ_S-function, then $\omega(g) \geq 5$. On the contrary, suppose that g be a γ_S-function and $\omega(g) < \omega(f)$. Hence, $|V_g^-| < |V_f^-|$. There is no loss of generality in assuming $|V_g^-| = \frac{pq-3}{2}$. Let $A^-_i = A_i \cap V_g^-$ and $B^-_j = B_j \cap V_g^-$. In order to reach the contradiction we use two following steps:

Step 1. $A^-_i \neq \emptyset$ for every $1 \leq i \leq p$.

On the contrary, suppose that for some $1 \leq m \leq p$, $A^-_m = \emptyset$. Let $w \in A_m$. So there is $1 \leq t \leq q$ such that $w \in A_m \cap B_t$. Hence, $g[w] = (p-1)(q-1) - 2|V_g^-| - |B^-_t| + 2 \geq 1$. Thus $|B^-_t| \geq \frac{pq-3}{2} - 2$. So $|V_g^-| \geq \frac{pq-3}{2}$. Hence, $pq - 3 \geq g(pq - 4)$. This makes a contradiction.

By similar argument we have $B^-_j \neq \emptyset$ for every $1 \leq j \leq q$.

Step 2. For every $1 \leq i \leq p$, $|A^-_i| \geq \lfloor \frac{q}{2} \rfloor$.

On the contrary, let $|A^-_i| = \lfloor \frac{q}{2} \rfloor - 1$. Let $v \in A_i$. There is $1 \leq t \leq q$ such that $v \in A_i \cap B_t$. If $g(v) = -1$, then $g[v] = (p-1)(q-1) + 1 - 2|V_g^-| - |A^-_i| - |B^-_t| + 2 \geq 1$. Hence, $|B^-_t \setminus \{v\}| \geq \lfloor \frac{q}{2} \rfloor$. If $g(v) = 1$, then $|B^-_t| \geq \lfloor \frac{q}{2} \rfloor$. Therefore, $|V_g^-| \geq |A^-_i|(|\lfloor \frac{q}{2} \rfloor + 1) + |A^-_i| |\lfloor \frac{q}{2} \rfloor|$. This implies that $q \leq 3$. This is a contradiction.

Likewise Step 2, $|B^-_j| \geq \lfloor \frac{q}{2} \rfloor$ for every $1 \leq j \leq q$. Since $|V_g^-| = \frac{pq-3}{2}$, there is $1 \leq k \leq p$ such that $|A^-_k| = \lfloor \frac{q}{2} \rfloor$. On the other hand, suppose that for $1 \leq t \leq q$, $|B^-_t| = \lfloor \frac{q}{2} \rfloor$. Let $u \in A_k \cap B^-_t$. If $s \in \{l_1, \cdots, l_t\}$, then $g[u] = -1 + (p-1)(q-1) - 2|V_g^-| - |A^-_k| - |B^-_s| + 2$

\[= -1 + (p-1)(q-1) - 2 \left(\frac{pq-3}{2} - \left\lfloor \frac{q}{2} \right\rfloor \right) + 2 \left\lfloor \frac{q}{2} \right\rfloor \]

\[= -3. \]

This is a contradiction by g is a signed dominating function. Hence, s is not in $\{l_1, \cdots, l_t\}$. Hence, $|A^-_k| = \lfloor \frac{q}{2} \rfloor$, $q - t \geq \left\lfloor \frac{q}{2} \right\rfloor$ and so $t \leq \left\lfloor \frac{q}{2} \right\rfloor$. As a consequence, $|V_g^-| \geq t\left(\frac{p}{2}\right) + (q-t)\left(\frac{p}{2}\right) \geq \left\lfloor \frac{q}{2} \right\rfloor \left(\frac{p}{2}\right) + \left\lfloor \frac{q}{2} \right\rfloor \left(\frac{p}{2}\right)$.

Since $|V_g^-| = \frac{pq-3}{2}$, this makes a contradiction. Therefore, $\gamma_S(Cay(Z_{pq}, S)) = 5$.

\[\square\]

Corollary 3.6. For any k-regular graph Γ on n vertices $\gamma_S(\Gamma) \geq \frac{n}{k+1}$. Hence, $\gamma_S(\Gamma) \geq 1$. It is easy to check that $\gamma_S(\Gamma) = 1$ if and only if Γ is a complete
graph and n is odd. Furthermore, for any prime numbers $p < q$, there is a $(p-1)(q-1)$-regular graph Γ with pq vertices such that $\gamma_S(\Gamma) \in \{2, 3, 5\}$.

Acknowledgments

The author is thankful of referees for their valuable comments.

References