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1. Introduction

Superminimal fibres of a Riemannian submersion have been introduced by
M. Falcitelli and A.M. Pastore [9] , who examined only the case of almost
Kähler submersions. On the other hand, B. Watson [18] , studied extensively
superminimal fibres of an almost Hermitian submersion. He used this property
to derive the structure of the total space according to that of the base space.

In [16] , we extended the definition of superminimal submanifolds to the φ-
invariant fibres of almost contact metric manifolds, considering submersions
whose total space is a nearly α-Kenmotsu manifold. There, we showed that
if the fibres of an almost contact metric submersion with total space a nearly
α−Kenmotsu manifold are superminimal, then the horizontal distribution is
completely integrable.
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The present paper utilizes superminimality property in almost contact met-
ric geometry to study the integrability of the horizontal distribution and the
structure of the total space. This last aspect is the inverse of the problem
examined in [15] where we determined the structure of the base space and the
fibres according to the structure of the total space.

This text is organized in the following way:
§2 is devoted to the recollection of some basic notions of almost contact

metric geometry and define a superminimal submanifold of an almost contact
metric manifold.

In §3, which contains a review of those general properties of almost contact
metric submersions that will be needed in the sequel, we generalize the Theorem
of Chinea [7] , concerning the structure equations of a submersion, to the case
of almost contact metric submersion of type II.

§4 is concerned with the determination of the classes of almost contact metric
submersions whose fibres are, a priori, superminimal. One could expect that
the superminimality should imply the minimality of the fibres. We will show
that , for this, some conditions are needed.

In §5, devoted to the integrability of the horizontal distribution, we inves-
tigate the classes of submersions for which the superminimality of the fibres
implies the integrability (or non-integrability) of the horizontal distribution.

At §6, we end our study with an examination of the transference of almost
contact metric structures. We prove the following technical result.

Lemma 2.Let f : M −→ N be an almost contact metric submersion of
type I. Suppose that the base space is defined by dη′ = 0. If the fibres are
superminimal and AX(φX) = 0, then dη = 0 on the total space.

This Lemma has many applications in the case of cosymplectic and Ken-
motsu geometries

2. Preliminary background.

The differential geometry of almost contact metric manifolds is developed
in the fundamental book of D.E. Blair [4] and its recent expansion [5] . Several
of the various almost contact metric structures were studied in the articles [2],
[3], [6], [8] and [12]. We recall here the definitions of only those objects that
are needed for our present study.

Let us recall that an almost contact metric manifold is a quintuple
(M, φ, ξ, η, g) where (M, g) is a Riemannian manifold and

(1) ξ is a distinguished unit vector field on M,
(2) η is the 1 - form on M which is g - dual to ξ,
(3) φ is a tensor field of type (1, 1) on M satisfying

φ ◦ φ = −Id + η ⊗ ξ,



Superminimal fibres in an almost contact metric submersion 79

(4) the Riemannian structure, g, satisfies

g(φE, φF ) = g(E, F ) − η(E)η(F ).

An almost contact metric manifold (M, φ, ξ, η, g) is necessarily of odd dimen-
sion, 2m + 1. In fact, we can always find an orthonormal φ - basis,
{E1, . . . , Em, φE1, . . . , φEm, ξ}, for the local smooth vector fields on
(M2m+1, φ, ξ, η, g).

Let (M, φ, ξ, η, g) be an almost contact metric manifold. The fundamental
2 - form on (M, φ, ξ, η, g) is

Φ(E, F ) = g(E, φF ).

Letting ∇ denote the Riemannian connection of (M, g), it is immediate that

(1.1) (∇EΦ) (F, G) = g(F, (∇Eφ)G) = g(F,∇E(φG) − φ∇EG).

With respect to the local φ -basis {E1, . . . , Em, φE1, . . . , φEm, ξ} on
(M2m+1,φ, ξ, η, g) , the codifferential, δΦ, of the fundamental 2-form, Φ, on M

is given by:

(1.2) δΦ(F ) = −
m∑

i=1

{(∇EiΦ) (Ei, F ) + (∇φEiΦ) (φEi, F )} − (∇ξΦ) (ξ, F )

In analogy with the almost Hermitian situation, we say that the almost
contact metric manifold (M2m+1,φ, ξ, η, g) is normal if the obvious induced
almost complex structure on M × R is integrable. One may show that M is
normal if and only if the tensor field, N (1), vanishes where: [2]

(1.3) N (1)(E, F ) = [φ, φ](E, F ) + 2dη(E, F )ξ

Recalling that

(1.4) (∇Eη) F = g(E,∇F ξ),

it is easy to see that the differential of η is

(1.5) dη(E, F ) =
1
2
{(∇Eη)F − (∇F η)E} ,

and that the codifferential of η is

(1.6) δη = −
m∑

i=1

{(∇Eiη)Ei + (∇φEiη)(φEi)} ,

with respect to the local φ -basis {E1, . . .,Em,φE1, ..., φEm, ξ} on the almost
contact metric manifold (M2m+1,φ, ξ, η, g).

Through the years, a plethora of almost contact metric structures have been
defined. In fact, according to the classification scheme of D. Chinea and C.
González [8], there are 4.096 such structures. We recall here only those almost
contact metric structures that are relevant to the present work. The interested
reader will certainly find many more almost contact metric structures in the
mathematical literature.
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An almost contact metric manifold (M2m+1,φ, ξ, η, g) is said to be:

(1) cosymplectic if ∇φ = 0,

(2) nearly cosymplectic if (∇Eφ)E = 0,

(3) almost cosymplectic if dΦ = 0 and dη = 0,

(4) semi-cosymplectic if δΦ = 0 and δη = 0,

(5) quasi-K-cosymplectic if (∇Eφ) F + (∇φEφ) (φF ) − η(F )∇φEξ = 0,

(6) Kenmotsu if (∇Eφ)F = g(φE, F )ξ − η(E)φF,

(7) nearly Kenmotsu if (∇Eφ)E = −η(E)φE,
(8) quasi-Sasakian if dΦ = 0 and M is normal,
(9) nearly Sasakian if

(∇Eφ)F + (∇F φ)E = 2g(E, F )ξ − η(E)F − η(F )E,

(10) Sasakian if Φ = dη and M is normal,
(11) C11 - manifold if

(∇EΦ) (F, G) = −η(E) (∇ξΦ) (φF, φG),

(12) C12 - manifold if

(∇EΦ) (F, G) = −η(E)η(G) (∇ξη) (φF ) − η(E)η(F ) (∇ξη) (φG),

Definition 1. Let (M2m+1, g, φ, ξ, η) be an almost contact metric manifold and
M̂ a φ− invariant submanifold of M. Then M̂ is said to be superminimal if
∇V φ = 0 for all vector fields, V , tangent to the submanifold M̂ .

3. Generalities on almost contact
metric submersions.

We refer the reader to the fundamental articles of B. O’Neill [13] and A. Gray
[11] as well as to Chapter 9 of the book [1] for the basic properties of Riemannian
submersions. These primarily concern the orthogonal decomposition T (M) =
H(M) ⊕ V (M) of the local vector fields on the total space of a Riemannian
submersion into horizontal and vertical vector fields. Recently, M. Falcitelli,
S. Ianus and A.M. Pastore have published an important and interesting book
on the main classes of Riemannian submersions [10]. We follow the traditional
notation, letting U, V, W, ...denote vertical vector fields and X, Y, Z, ... denote
horizontal vector fields on (M ,φ, ξ, η, g). In particular, the important properties
of the two O’Neill configuration tensors, T and A, of a Riemannian submersion
are contained in these references.

We will have occasion to use the following result from B. O’Neill’s founda-
tional paper [13]:

Lemma 1. Let f : M −→ N be a Riemannian submersion. Let X be a basic
vector field on M . Then,

H∇UX = AXU.



Superminimal fibres in an almost contact metric submersion 81

3.1. Almost contact metric submersions of type I.

Definition 2. Let (M ,φ, ξ, η, g) and (N ,φ′, ξ′, η′, g′) be almost contact metric
manifolds. A Riemannian submersion f : M −→ N that satisfies:

(1) f∗φE = φ′f∗E, and
(2) f∗ξ = ξ′

is called an almost contact metric submersion of type I [17]. If (M ,φ, ξ, η, g)
is in the structure class ℘ of the classification scheme of D. Chinea and C.
González [8], then we say that f is a ℘-submersion of type I.

The fibre submanifolds, M̂, of an almost contact metric submersion of type
I are almost Hermitian manifolds, (M̂, Ĵ , ĝ) in a natural way. The defining
relation for a contact manifold is Φ = dη. It is easy to see that dη(U, V ) = 0 for
all vertical vector fields, U and V , on an almost contact metric submersion of
type I. Thus, there are no non-trivial (trivial here means having 0-dimensional
fibres) almost contact metric submersions of type I with nearly Sasakian, quasi-
K-Sasakian, almost - α - Sasakian, α - Sasakian, Sasakian, contact or K-contact
total space.

We recall the important properties of an almost contact metric submersion
of type I. See [17] and [14] for the proof of the following proposition and related
results.

Proposition 1. Let f : (M ,φ, ξ, η, g) −→ (N ,φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I. Then,

a) φ{V (M)} ⊆ V (M),
b) φ{H(M)} ⊆ H(M),
c) ξ is horizontal,
d) η(V ) = 0, for all vertical vector fields, V,

e) f∗η′ = η,

f) Φ̂(U, V ) = Φ(U, V ), for all vertical vector fields, U and V,

g) H (∇Xφ) Y is the basic vector field associated to
(
∇′

X∗
φ′) Y∗ on N, for

X and Y , basic vector fields on M .
While defining and studying the structure equation of an almost contact

metric manifold of type I, D. Chinea defined a tensor A∗( . , . ) of type (1, 2) by
setting

A∗(X, Y ) = AX(φY ) − AφXY.

Chinea then proved:

Theorem 1. [7] Let f : (M ,φ, ξ, η, g) −→ (N ,φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I. Let E be an arbitrary vector field on the total
space, M, and let H be the (horizontal) mean curvature vector field of the
fibres. Then,
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a) δΦ(E) = g(H, φHE) + δ′Φ′((HE)∗) + δ̂Φ̂(VE) + 1
2g(trA∗,VE), and

b) δη = −g(H, ξ) + f∗(δ′η′).

3.2. Almost contact metric submersions of type II.

Definition 3. Let (M ,φ, ξ, η, g) be an almost contact metric manifold and
let (N, J ′, g′) be an almost Hermitian manifold. A Riemannian submersion
f : M −→ N that satisfies:

f∗φE = J ′f∗E

is called an almost contact metric submersion of type II [17] . If (M ,φ, ξ, η, g)
is in the structure class ℘ of the classification scheme of D. Chinea and C.
González [8], then we say that f is a ℘- submersion of type II.

The fibre submanifolds, M̂, of an almost contact metric submersion of type
II are almost contact metric manifolds, (M̂, φ̂, ξ̂, η̂, ĝ) in a natural way.

The analogue of Proposition (1) is:

Proposition 2. Let f : (M ,φ, ξ, η, g) −→ (N, J ′, g′) be an almost contact
metric submersion of type II. Then,

a) φ{V (M)} ⊆ V (M),
b) φ{H(M)} ⊆ H(M),
c) f∗Φ′ = Φ,

d) ξ is vertical,
e) η(X) = 0, for all horizontal vector fields, X ,
f) H (∇Xφ) Y is the basic vector field associated to

(
∇′

X∗
J ′) Y∗ on N,

for X and Y , basic vector fields on M ,
g) dη(X, Y ) = − 1

2η([X, Y ]) = −η(AXY ) for all horizontal vector fields,
X and Y.

We refer the reader to [17] for a discussion of the restriction of a given almost
contact metric structure from the total space to the fibres of an almost contact
metric submersion of type II, as well as for the induction of a particular almost
Hermitian structure onto the base space

Corollary 1. Let f : (M ,φ, ξ, η, g) −→ (N, J ′, g′) be an almost contact metric
submersion of type II. If dη = 0 on M , then AXY is g-orthogonal to ξ inside
the vertical distribution.

Proof. Obvious from assertion (g) of the previous proposition. �

Theorem 2. Let f : (M2m+1,φ, ξ, η, g) −→ (N2n, J ′, g′) be an almost contact
metric submersion of type II. Then, for an arbitrary vector field, E, on M ,

(1) δΦ(E) = g(H, φHE) + δ′Φ′(HE∗) + δ̂Φ̂(VE) + 1
2g(trA∗,VE),

(2) δη = δ̂η̂,
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Proof. The first relation is proved exactly as in [7] for almost contact met-
ric submersions of type I. To see the second assertion, let {E1, . . . , Em,
φE1, . . . , φEm, F1, . . . , Fn, φF1, . . . , φFn, ξ} be a basis for the local vector
fields on M with the {Ei, φEi} ∪ {ξ}, vertical and the {Fj , φFj} horizontal.
Then,

δη = − (∇ξη) ξ−
m−n∑

i=1

{(∇Eiη) Ei + (∇φEiη) φEi}−
n∑

j=1

{(
∇Fj η

)
Fj +

(
∇φFj η

)
φFj

}

The first term together with the first sum obviously comprise δ̂η̂. Note that the
constancy of ‖ξ‖2 = g(ξ, ξ) implies that (∇ξη) ξ = g(ξ,∇ξξ) = 0. In the second
sum, note that each term of the form

(
∇Fj η

)
Fj is g(Fj ,∇Fj ξ). This then is

−g(∇FjFj , ξ) = g(AFj Fj , ξ). The Fj are horizontal vector fields and, therefore,
AFj Fj vanishes for the skew-symmetric tensor A. �

Letting {E1, . . . , Em, φE1, . . . , φEm, F1, . . . , Fn, φF1, . . . , φFn, ξ} be
a basis for the local vector fields on M with the {Ei, φEi} ∪ {ξ}, vertical and
the {Fj , φFj}, horizontal; we easily calculate that, on an almost contact metric
submersion of type I, f : (M2m+1,φ, ξ, η, g) −→ (N2n+1, φ′, ξ′, η′, g′)

trA∗ = 4
n∑

j=1

AFj (φFj).

4. Classes of submersions with

superminimal fibres.

We investigate here the classes of almost contact metric submersions whose
fibres are, or are not, superminimal.

Let f : (M ,φ, ξ, η, g) −→ (N ,φ′, ξ′, η′, g′) be an almost contact metric sub-
mersion of type I. In order to verify superminimality of the almost Hermitian
fibres, (M̂, Ĵ , ĝ), there are four components of g((∇V φ)E, F ) to be considered
on the total space, M . We easily find:

SM-1) g((∇V φ)U, W ) = g(∇̂V (ĴU) − Ĵ∇̂V U, W ),
SM-2) g((∇V φ)U, X) = g(TV (φU) − φ(TV U), X),
SM-3) g((∇V φ)X, U) = −g((∇V φ)U, X),
SM-4) g((∇V φ)X, Y ) = −g(AφXY + AX(φY ), V ).

Let f : (M ,φ, ξ, η, g) −→ (N, J ′, g′) be an almost contact metric submersion of
type II. In order to verify superminimality of the almost contact metric fibres,
(M̂ ,φ̂, ξ̂, η̂, ĝ) there are four components of g((∇V φ)E, F ) to be considered on
the total space, M . We easily find:

SM-5) g((∇V φ)U, W ) = g(∇̂V (φ̂U) − φ̂∇̂V U, W ),
SM-6) g((∇V φ)U, X) = g(TV (φU) − φ(TV U), X),
SM-7) g((∇V φ)X, U) = −g((∇V φ)U, X),
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SM-8) g((∇V φ)X, Y ) = −g(AφXY + AX(φY ), V ).

We note the important fact that if the fibres, (M̂, Ĵ , ĝ), of an almost contact
metric submersion of type I are superminimal, then the vanishing of calculation
SM-4) yields AφXY = −AX(φY ). In this case,

A∗(X, Y ) = −2AX(φY ).

The vanishing of SM−1) implies that if the fibres of a type I almost contact
metric submersion are superminimal, then they are Kähler. With this in mind,
it is easy to prove the following

Proposition 3. Let f : (M2m+1,φ, ξ, η, g) −→ (N2n+1,φ′, ξ′, η′, g′) be an al-
most contact metric submersion of type I such that on the total space, δη = 0.

If the fibres are superminimal, then δ′η′ = 0 on the base space.

Proposition 4. Let f : (M, φ, ξ, η, g) −→ (N, φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I. If the total space is cosymplectic, a C11 or a C12-
manifold, then the fibres are superminimal.

Proof. The case of a cosymplectic submersion is obvious. Let us consider the
case of a C11−submersion. Consider a vector field V tangent to the fibres.
Since the contact 1−form η vanishes on vertical vector fields, on the light of
Proposition 1d), we have

(∇V Φ)(E, F ) = 0.

It is known that (∇V Φ)(E, F ) = g(E, (∇V φ)F ) which leads to
g(E, (∇V φ)F ) = 0. According to the non-degeneracy of g, we deduce
(∇V φ)F = 0 which shows that the fibres are superminimal. We apply the same
procedure for a C12−submersion. �

Proposition 5. Let f : (M ,φ, ξ, η, g) −→ (N , J ′, g′) be an almost contact
metric submersion of type II. If the total space, M , is cosymplectic, then the
fibres are superminimal.

Proof. If the total space is cosymplectic, we have obviously, that the four cal-
culations SM-5), SM-6), SM-7) and SM-8) vanish. Then the fibres are super-
minimal. �

Proposition 6. Let f : (M ,φ, ξ, η, g) −→ (N , J ′, g′) be an almost contact
metric submersion of type II with M , either C11 or C12, but not cosymplectic.
Then the fibres can not be superminimal.

Proof. We first note that the base space of an almost contact metric submersion
of type II with a C11 or C12 total space is Kähler. The fundamental 1-form,
η, on M vanishes on the horizontal distribution, so the defining relations for a
C11 or C12- manifold imply that

(∇XΦ) (F, G) = g(F, (∇Xφ)G) = 0.
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Thus, ∇Xφ = 0 for all horizontal vector fields, X. Then, if the fibres are taken
to be superminimal, we have ∇Uφ = 0, contradicting the non-cosymplectic
nature of the total space, M . �

5. Integrability of the horizontal distribution.

We will see that the superminimality of the fibres plays an important role
in the integrability of the horizontal distribution for almost contact metric
submersions of both types. Recall that the horizontal distribution of a Rie-
mannian submersion is said to be (completely) integrable if the O’Neill tensor,
A, vanishes identically (i.e., if A ≡ 0).

Proposition 7. Let f : (M, φ, ξ, η, g) −→ (N, φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I such that the total space is quasi-K-cosymplectic,
(resp. almost cosymplectic; resp., quasi-Sasakian). If the fibres are supermini-
mal, then the horizontal distribution is completely integrable.

Proof. It is not hard to show that AX (φY ) = φAXY for the three mentioned
almost contact metric submersions. If the fibres are superminimal, we have
g ((∇Uφ) X, Y ) = −g (AφXY + AX(φY ), U) which implies that A ≡ 0. �

Proposition 8. Let f : (M2m+1,φ, ξ, η, g) −→ (N2n, J ′, g′) be an almost con-
tact metric submersion of type II with M , almost cosymplectic (resp. closely
cosymplectic; resp. nearly cosymplectic; resp. quasi-K-cosymplectic; resp. nearly-
K-cosymplectic) . If the fibres are superminimal, then the horizontal distribu-
tion is completely integrable.

Proof. For each of the manifolds under consideration, it can be quickly shown
that AXφX = AφXX from which A ≡ 0. �

Proposition 9. [16] Let f : (M2m+1,φ, ξ, η, g) −→ (N2n, J ′, g′) be an almost
contact metric submersion of type II with M , nearly Kenmotsu. If the fibres
are superminimal, then the horizontal distribution is completely integrable.

Proof. Since η vanishes on horizontal vector fields, the defining relations of a
nearly Kenmotsu manifold gives (∇Xφ) X = 0. On an almost contact metric
submersion of type II with M , nearly Kenmotsu, (∇Xφ) X = −η(X)φX for
any horizontal vector field, X . Therefore, AX(φX) = 0. The usual polarization
trick implies that AX(φY ) = AφXY. Combining this with calculation SM-8)
yields A ≡ 0. �

One would think that the superminimality of the fibres of an almost contact
metric submersion of type II should be an effective tool in proving the integra-
bility of the horizontal distribution; unfortunately, the following proposition is
an obstruction in this matter.
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Proposition 10. Let f : (M ,φ, ξ, η, g) −→ (N , J ′, g′) be an almost contact
metric submersion of type II with M , nearly Sasakian. If the fibres are super-
minimal, then the horizontal distribution can not be completely integrable.

Proof. We know from Theorem. 4.12(d) of [17], that

AX (φY ) − AφXY = 2g(X, Y )ξ

on a nearly Sasakian submersion of type II. The vanishing of calculation SM-8)
yields AφXY = −AX(φY ). Hence, AX(φY ) ≡ g(X, Y )ξ. If A was zero, then
the distinguished vector field, ξ, would vanish which is a contradiction. �

6. Structure of the total space.

As in [18], we are able to use the assumed superminimality of the fibres to
induce a specific almost contact metric structure onto the total space of an
almost contact metric submersion provided that certain necessary structures
exist on the base space and the fibres. We begin by proving a technical result.

Lemma 2. Let f : (M ,φ, ξ, η, g) −→ (N ,φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I. Suppose that d ′η′ = 0 on (N ,φ′, ξ′, η′, g′). If the
fibres are superminimal and AX(φX) = 0, then dη = 0 on the total space
(M ,φ, ξ, η, g).

Proof. In order to see that dη = 0, we begin by assuming that X and Y are
basic vector fields on the total space, M . Then dη(X, Y ) = d′η′(X∗, Y∗) = 0.
The vanishing of calculation SM-2) implies, along with AX(φX) = 0,

that A ≡ 0. Now,

2dη(X, U) = (∇Xη) U − (∇Uη) X

= g(X,∇Uξ) − g(U,∇Xξ)

= g(X,∇Uξ) − g(U, AXξ)

= g(X,∇Uξ).

The superminimality of the fibres implies that

0 = g((∇Uφ)ξ, X)

= g(∇U (φξ), X) − g(φ∇U ξ, X)

= g(∇U ξ, φX).

Thus, ∇U ξ is g-orthogonal to all horizontal vector fields except, perhaps,
ξ. Recall that ‖ξ‖2 = g(ξ, ξ) is constant 1, so that g(∇Uξ, ξ) = 0. Hence,
dη(X, U) = 0 and dη(U, X) = 0.

Recall, too, that the Lie bracket [U, V ] is vertical from the complete integrability
of the vertical distribution. Then,

dη(U, V ) =
1
2
{Uη(V ) − V η(U) − η ([U, V ])}
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is zero because η vanishes on the vertical distribution. �

The preceding Lemma applies to the following almost contact metric struc-
tures, among others:

(1) Closely cosymplectic,
(2) Almost cosymplectic,
(3) Cosymplectic,
(4) Nearly Kenmotsu.

Theorem 3. Let f : (M ,φ, ξ, η, g) −→ (N ,φ′, ξ′, η′, g′) be an almost contact
metric submersion of type I. Assume that the base space, N , is nearly cosym-
plectic (or nearly - K - cosymplectic, or nearly Kenmotsu) and that the fibres
are superminimal. If AX(φX) = 0, then the total space, M, is respectively
nearly cosymplectic (or nearly - K - cosymplectic, or nearly Kenmotsu).

Proof. There are four calculations that must vanish in order to conclude that
the total space, (M ,φ, ξ, η, g) , is nearly cosymplectic:
NC-1) g((∇Uφ)U, V );
NC-2) g((∇Uφ)U, X);
NC-3) g((∇Xφ)X, U);
NC-4) g((∇Xφ)X, Y ).

The superminimality of the fibres implies that the first two calculations are
0. We may assume that the horizontal vector fields X and Y are basic for cal-
culation NC-4), in which case that calculation vanishes because the base space
is nearly cosymplectic. Finally,
g((∇Xφ)X, U) = g(∇X(φX), U) − g(φ∇XX, U) = g(∇X(φX), U) = 0
yielding the vanishing of calculation NC-3).

Concerning the case of the nearly - K - cosymplectic structure on the base
space, we need only establish that ∇η = 0 on the total space, M ; that is,
we must show that ∇Eξ = 0 for all vector fields, E, on M . But ∇Xξ = 0
by projection onto the base space. For ∇U ξ, we know that 0 = ∇Uξ by the
superminimality of the fibres. Thus,

0 = ∇U (φξ) − φ∇U ξ

So, 0 = −φφ∇U ξ

= ∇U ξ − η(∇U ξ)ξ.

But, we established that η(∇U ξ) = g(∇Uξ, ξ) = 0 during the proof of Lemma
2. Therefore, ∇η = 0 and M is nearly-K -cosymplectic.

Now let us consider the case of the nearly Kenmotsu structure. It is known
that d ′η′ = 0 on the nearly Kenmotsu base space, (N ,φ′, ξ′, η′, g′). Lemma 2
then implies that dη = 0 on the total space (M ,φ, ξ, η, g). Since η vanishes on
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the horizontal distribution, we need only show that (∇Uφ) U = 0 and that 0
= (∇Xφ) X + η(X)φX. Let X be a basic horizontal vector field. Then,

(∇Xφ) X + η(X)φX = (∇′
Xφ′) X∗ + η′(X∗)φ′X∗ = 0.

Clearly, (∇Uφ) U = 0 because the fibres are superminimal. Therefore, the total
space, M, is nearly Kenmotsu. �
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