Radical and It's Applications in BCH -Algebras

R. A. Borzooei* and O. Zahiri
Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran
\[\begin{aligned} \& E-mail: borzooei@sbu.ac.ir
\& E-mail: o.zahiri@yahoo.com \end{aligned} \]

Abstract

In this paper, for any ideal I of $B C H$-algebra X, we introduce the concept of \sqrt{I} and show that it is an ideal of X, when I is a closed ideal. Then we verify some useful properties of it and prove that it is the union of all k-nil ideals of I. Moreover, if I is a closed ideal of X, then \sqrt{I} is a closed translation ideal and so we can construct a quotient $B C H$-algebra. We prove this quotient $B C H$-algebra is a P -semisimple $B C I$-algebra and so it is an abelian group. Finally, we use the concept of radical in order to construct the second and the third isomorphism theorems.

Keywords: Ideal, radical, Quotient $B C H$-algebra, Maximal, Translation.

2000 Mathematics subject classification: 06F35, 03G25.

1. Introduction and Preliminaries

In 1966, Imai and Iséki [13, 14] introduced two classes of abstract algebras : $B C K$-algebras and $B C I$-algebras. It is well-known that the class of $B C K$ algebras is a proper subclass of the class of $B C I$-algebras. Since then many authors work on various aspects of these algebras such as hyper and fuzzy structure [1, 8, 9, 20], topological view [19]. In 1983, Hu and $\mathrm{Li}[10,11]$ introduced a new class of algebras so-called $B C H$-algebras. They proved that the class of $B C I$-algebras is a proper subclass of $B C H$-algebras. They studied some properties of this algebra. In [6], Dudek and Jun introduced the notion of k-nil

[^0]radical in BCH -algebras. They showed that when I is a translation ideal of X, then the k-nil radical of I is also a translation ideal of X. In this paper, we generalize this concept and define the notion of radical in BCH -algebras. We prove that in any $B C H$-algebra ($B C I$-algebra) the radical (the k-nil radical) of a closed ideal (of an ideal) is a translation ideal. Then we verify some properties of radical and use it to construct a BCH -algebra without any nilpotent elements.

Definition 1.1. $[10,11]$ A $B C H$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
(BCH1) $(x * y) * z=(x * z) * y$,
(BCH2) $x * x=0$,
(BCH3) $x * y=0$ and $y * x=0$ imply $y=x$.

In any $B C H$-algebra X, the following hold: for any $x, y \in X$,
(BCH4) $x * 0=x$,
(BCH5) $0 *(x * y)=(0 * x) *(0 * y)$,
(BCH6) $0 *(0 *(0 * x))=0 * x$.
The set $P=\{x \in X \mid 0 *(0 * x)=x\}$ is called P-semisimple part of X. A $B C H$-algebra X is said to be P-semisimple if $P=X$.
A BCH-algebra X is called BCI-algebra if $((x * y) *(x * z)) *(z * y)=0$, for all $x, y, z \in X$. The set $B=\{x \in X \mid 0 * x=0\}$ is called the $B C K-$ part of X. Moreover, if X is a $B C I$-algebra and $B=\{0\}$, then X is a Psemisimple $B C I$-algebra. We will also use the following notation for simplicity:
$x * y^{n}=(\ldots(x * \overbrace{y) * \ldots) * y}^{n \text { time }}$, where $x, y \in X$ and $n \in \mathbb{N}$. A $B C I$-algebra X is called nilpotent if for any $x \in X$ there is $n \in \mathbb{N}$ such that $0 * x^{n}=0$.

Definition 1.2. [10, 11] A non-empty subset I of a $B C H$-algebra X is called an ideal if $0 \in I$ and $y * x \in I$ and $x \in I$ imply $y \in I$, for all $x, y \in X$. An ideal I is called proper, if $I \neq X$ and it is called closed, if $x * y \in I$, for all $x, y \in I$. If S is a subset of X, then the least ideal of X containing S is called the generated ideal of X by S and is denoted by $\langle S\rangle$. If X is a $B C H$-algebra, I and J are ideals of X, then we use $I+J$ to denote the ideal of X generated by $I \cup J$.

Theorem 1.3. [21] A BCI-algebra X is nilpotent if and only if all ideals of X are closed.

Theorem 1.4. [21] Let S be a nonempty subset of a $B C I$-algebra X and $A=\left\{x \in X \mid\left(\ldots\left(\left(x * a_{1}\right) * a_{2}\right) * \ldots\right) * a_{n}=0\right.$, for some $n \in \mathbb{N}$ and $\left.a_{1}, \ldots, a_{n} \in S\right\}$ Then $\langle S\rangle=A \cup\{0\}$. If S contains a nilpotent element, then $\langle S\rangle=A$.

Note 1.5. If I is a closed ideal of $B C H$-algebra X and $x \in I$, then $0 * x \in I$. Moreover, if J is an ideal of $B C H$-algebra X such that $0 * x \in J$, for any $x \in J$, then by (BCH1), $(x * y) * x=0 * y \in J$, for any $x, y \in J$. Since J is an ideal, then $x * y \in J$, for any $x, y \in J$. Therefore, J is a closed ideal of X.

Lemma 1.6. [6] Let X be a BCH-algebra. Then the following hold:
(i) $0 *(0 * x)^{n}=0 *\left(0 * x^{n}\right)$, for any $n \in \mathbb{N}$,
(ii) $0 *(x * y)^{n}=\left(0 * x^{n}\right) *\left(0 * y^{n}\right)$, for any $n \in \mathbb{N}$.

Definition 1.7. [18] Let X and Y be two $B C H$-algebras. A map $f: X \rightarrow Y$ is called a $B C H$-homomorphism if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$. Clearly, if f is a $B C H$-homomorphism, then $f(0)=0$.

Lemma 1.8. Let X be a BCH-algebra. Then the map $f_{n}: X \rightarrow X$, is defined by $f_{n}(x)=0 * x^{n}$, is a BCH-homomorphism, for all $n \in \mathbb{N}$.

Proof. See Lemma 1.6(ii).
Lemma 1.9. [5] Let X be a BCH-algebra and f_{0} be the map is defined in Lemma 1.8, Then $f_{0}(X)$ is a BCI-algebra.

Note 1.10. Let A be an ideal of a $B C I$-algebra X. Define a binary relation θ on X as follows: $(x, y) \in \theta$ if and only if $x * y, y * x \in A$, for all $x, y \in X$. Then, θ is a congruence relation and it is called the congruence relation induced by A. We usually denote A_{x} for $[x]=\{y \in X \mid(x, y) \in \theta\}$. Moreover A_{0} is the greatest closed ideal of X contained in A. Set $X / A=\left\{A_{x} \mid x \in X\right\}$. Then $\left(X / A, *, A_{0}\right)$ is a $B C I$-algebra, where $A_{x} * A_{y}=A_{x * y}$, for all $x, y \in X$ (See [21]).

Theorem 1.11. [18] Let X, Y be two BCH-algebras and $f: X \rightarrow Y$ be a $B C H$-algebra homomorphism. Then $f(X) \cong X / \operatorname{Ker}(f)$.

Theorem 1.12. [21] Let A be a closed ideal of a BCI-algebra $X, I(X, A)$ be the collection of all ideals of X containing A and $I(X / A)$ be the collection of all ideals of X / A. Then $\varphi: I(X, A) \rightarrow I(X / A)$, defined by $I \mapsto I / A$, is a bijection.

Theorem 1.13. [4] The category of BCH-algebras has arbitrary products. Let $\left\{X_{j} \mid j \in J\right\}$ be a family of BCH-algebras. Then $\prod_{j \in J} X_{j}=\left\{\left(x_{j}\right)_{j \in J} \mid x_{j} \in\right.$ $\left.X_{j}, \forall j \in J\right\}$ is the product of this family.

Definition 1.14. Let $(X, ., 0)$ be an abelian group. Then $(X, *, 0)$ is a P semisimple $B C I$-algebra, where $x * y=x . y^{-1}$, for all $x, y \in X$. This $B C I$ algebra is called the adjoint $B C I$-algebra of $(X, ., 0)$ (See [21], Example 1.3.1.).

From now on, in this paper, we assume $X=(X, *, 0)$ be a $B C H$-algebra , unless otherwise stated.

2. Radical in $B C H$-algebras

In 1992, W. P. Huang [12] introduced the notion of nil ideal in $B C I$-algebras. In 1999, E. H. Roh and Y. B. Jun introduced nil ideals in BCH -algebras. They introduced nil subsets using nilpotent elements. Then W. A. Dudek and Y. B. Jun [6] introduced the notion of k-nil radicals in BCH -algebras. They showed that, if I is an ideal of X, then k-nil radical of I is an ideal, too. Moreover, k -nil radical of a translation ideal is again a translation ideal.

Lemma 2.1. For any $x \in X$ and $n, m \in \mathbb{N}$, the following hold:
(i) $0 *\left(0 *\left(0 * x^{n}\right)\right)=0 * x^{n}$.
(ii) $0 *\left(0 * x^{n}\right)^{m}=0 *\left(0 * x^{n m}\right)$.

Proof. (i) Let $x \in X$ and $n \in \mathbb{N}$. Then

$$
\begin{aligned}
0 *\left(0 *\left(0 * x^{n}\right)\right) & =0 *\left(0 *(0 * x)^{n}\right), \quad \text { by Lemma } 1.6(\mathrm{i}) \\
& =0 *(0 *(0 * x))^{n}, \quad \text { by Lemma } 1.6(\mathrm{i}) \\
& =(0 *(0 *(0 * x))) *(0 *(0 * x))^{n-1} \\
& =(0 * x) *(0 *(0 * x))^{n-1}, \quad \text { by }(\mathrm{BCH} 6) \\
& =((0 * x) *(0 *(0 * x))) *(0 *(0 * x))^{n-2} \\
& =((0 *(0 *(0 * x))) * x) *(0 *(0 * x))^{n-2}, \quad \text { by }(\mathrm{BCH} 1) \\
& =\left(0 * x^{2}\right) *(0 *(0 * x))^{n-2}, \quad \text { by }(\mathrm{BCH} 6) \\
& \vdots \\
& =\left(0 * x^{n-1}\right) *(0 *(0 * x)) \\
& =(0 *(0 *(0 * x))) * x^{n-1}, \quad \text { by }(\mathrm{BCH} 1) \\
& =(0 * x) * x^{n-1}, \quad \text { by }(\mathrm{BCH} 6) \\
& =0 * x^{n} .
\end{aligned}
$$

(ii) Suppose that $x \in X$ and $n, m \in \mathbb{N}$. Then

$$
\begin{aligned}
0 *\left(0 * x^{n}\right)^{m} & =(\ldots(0 * \overbrace{\left.\left.\left(0 * x^{n}\right)\right) * \ldots\right) *\left(0 * x^{n}\right)}^{m \text { time }} \\
& =(\ldots(\left(0 *\left(0 * x^{n}\right)\right) * \overbrace{\left.\left.\left(0 * x^{n}\right)\right) * \ldots\right) *\left(0 * x^{n}\right)}^{m-1}) \\
& =(\ldots(\left(0 *(0 * x)^{n}\right) * \overbrace{\left.\left.\left(0 * x^{n}\right)\right) * \ldots\right) *\left(0 * x^{n}\right)}^{m-1}), \quad \text { by Lemma 1.6(i) }) \\
& =((\ldots(0 * \overbrace{\left.\left.\left(0 * x^{n}\right)\right) * \ldots\right) *\left(0 * x^{n}\right)}^{m-1}) *(0 * x)^{n}, \quad \text { by (BCH1) } \\
& =((\ldots(0 * \overbrace{\left.\left.\left(0 * x^{n}\right)\right) * \ldots\right) *\left(0 * x^{n}\right)}^{m-2}) *(0 * x)^{2 n} \\
& \vdots \\
& =0 *(0 * x)^{m n} .
\end{aligned}
$$

Now, by Lemma 1.6(i), we obtain $0 *\left(0 * x^{n}\right)^{m}=0 *\left(0 * x^{n m}\right)$.

Definition 2.2. Let I be an ideal of X. The set

$$
\left\{x \in X \mid 0 * x^{n} \in I \text { and } 0 *\left(0 * x^{n}\right) \in I, \text { for some } n \in \mathbb{N}\right\}
$$

is called the radical of I and is denoted by \sqrt{I}.
Example 2.3. Let $(\mathbb{Z},-, 0)$ be the adjoint $B C I$-algebra of the abelian group $(\mathbb{Z},+, 0)$. Let $Y=\{0, b, c, d\}$. Define the binary operation "*'" on Y by the following table:

Table 1				
$*^{\prime}$	0	b	c	d
0	0	0	0	0
b	b	0	d	d
c	c	0	0	c
d	d	0	0	0

Then $\left(Y, *^{\prime}, 0\right)$ is a $B C H$-algebra (See [3], Example 2.3). Now, let $X=$ $\mathbb{Z} \cup\{b, c, d\}$ and define the operation "*" on X, by

$$
x * y=\left\{\begin{aligned}
x-y & \text { if } x, y \in \mathbb{Z} \\
x *^{\prime} y & \text { if } x, y \in Y \\
-y & \text { if } x \in Y, y \in \mathbb{Z}-\{0\}, \\
x & \text { if } x \in \mathbb{Z}, y \in Y .
\end{aligned}\right.
$$

Clearly, $*$ is well-defined and $x * x=0$, for any $x \in X$. Let $x * y=0=y * x$, for some $x, y \in X$. Since $\left(Y, *^{\prime}, 0\right)$ and $(\mathbb{Z},-, 0)$ are $B C H$-algebras, then $x, y \in \mathbb{Z}$ or $x, y \in Y$, implies $x=y$. If $x \in Y$ and $y \in \mathbb{Z}-\{0\}$, then $0=x * y=-y$ and so $y=0$. On the other hand, $0=x * y=x * 0=x$. Hence $x=y$. By a similar way if $x \in \mathbb{Z}-\{0\}$ and $y \in Y$, then $0=x * y=x$ and so $x=0$. Hence "*" satisfies in (BCH3). Moreover, if $x, y, z \in X$. Then clearly, $x, y, z \in Y$ or $x, y, z \in \mathbb{Z}$ implies $(x * y) * z=(x * z) * y$. If $x \in \mathbb{Z}$, then $(x * y) * z=x=(x * z) * y$. Now, let $x \in Y$. If $y=0$ or $z=0$, then clearly, $(x * y) * z=(x * z) * y$. Let $y, z \in \mathbb{Z}-\{0\}$, then $(x * y) * z=-y-z=-z-y=(x * z) * y$. If $y \in Y$, then $(x * y) * z=\left(x *^{\prime} y\right) * z=-z=-z * y=(x * z) * y$. Finally, if $z \in Y$ and $y \in \mathbb{Z}$, then $(x * y) * z=(-y) * z=-y=(x * z) * y$. Therefore, $(X, *, 0)$ is a BCH-algebra. Let $I=\{0\}$. If $x \in \mathbb{Z}$, then $0 * x^{n}=0$ implies $-n x=0$ and so $x=0$, for all $n \in \mathbb{N}$. Hence $\sqrt{I}=\left\{x \in X \mid 0 * x^{n}=0,0 *\left(0 * x^{n}\right)=0\right.$ for some $\left.n \in \mathbb{N}\right\}=\{0, b, c, d\}$.

Corollary 2.4. If I is a closed ideal, then

$$
\sqrt{I}=\left\{x \in X \mid 0 * x^{n} \in I, \text { for some } n \in \mathbb{N}\right\}
$$

Definition 2.5. [6] Let I be a non-empty subset of X. Then the set $\sqrt[k]{I}=$ $\left\{x \in X \mid 0 * x^{k} \in I\right\}$ is called the k-nil radical of I.

In Corollary 2.6 we will obtain the relation between \sqrt{I} and $\sqrt[n]{I}$, for any $n \in \mathbb{N}$.

Corollary 2.6. Let I be a closed ideal of X. Then,
(i) $\sqrt{I}=\bigcup_{n \in \mathbb{N}} \sqrt[n]{I}$.
(ii) If $x, y \in \sqrt{I}$, then there exists $m \in \mathbb{N}$ such that, $x, y \in \sqrt[m]{I}$.

Proof. (i) Let $x \in X$. Then

$$
\begin{aligned}
x \in \sqrt{I} & \Leftrightarrow 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in I, \quad \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow 0 * x^{n} \in I, \quad \text { since } I \text { is a closed ideal } \\
& \Leftrightarrow x \in \sqrt[n]{I}, \quad \text { for some } n \in \mathbb{N} .
\end{aligned}
$$

Therefore, $\sqrt{I}=\bigcup_{n \in \mathbb{N}} \sqrt[n]{I}$, for some $n \in \mathbb{N}$.
(ii) Let $x, y \in \sqrt{I}$. Then there are $s, t \in \mathbb{N}$ such that, $0 * x^{s}, 0 *\left(0 * x^{s}\right) \in I$ and $0 * y^{t}, 0 *\left(0 * y^{t}\right) \in I$. Since I is closed, we have $0 *\left(0 * x^{s}\right)^{t} \in I$ and $0 *\left(0 * y^{t}\right)^{s} \in I$. Now, Lemma 2.1(ii), implies $0 *\left(0 * x^{s t}\right) \in I$ and $0 *\left(0 * y^{t s}\right) \in I$ and so $0 *\left(0 *\left(0 * x^{s t}\right)\right) \in I$ and $0 *\left(0 *\left(0 * y^{t s}\right)\right) \in I$. Hence by Lemma 2.1(i), we have $0 * x^{s t}, 0 * y^{t s} \in I$, so $x, y \in \sqrt[s t]{I}$.

Theorem 2.7. Let I be a closed ideal of X. Then \sqrt{I} is a closed ideal of X.
Proof. Obviously, $0 \in \sqrt{I}$. Let $x, y \in X$ such that $x * y, y \in \sqrt{I}$. Since I is closed, so by Corollary $2.4,0 *(x * y)^{n} \in I$ and $0 * y^{m} \in I$, for some $n, m \in \mathbb{N}$. By lemma 2.1(ii), we have $\left(0 *\left(0 *(x * y)^{2 n}\right)\right)=\left(0 *(0 *(x * y))^{n}\right) *(0 *(x * y))^{n} \in I$. By a similar argument we get that $\left(0 *\left(0 *(x * y)^{m n}\right)\right) \in I$. Since I is a closed ideal of $\left.X, 0 *\left(0 *\left(0 *(x * y)^{m n}\right)\right)\right) \in I$. Then, by Lemma 2.1(i), $0 *(x * y)^{m n} \in I$. Likewise, we can we obtain $0 * y^{m n} \in I$. Since I is an ideal of X, by Lemma $1.6,0 * x^{m n} \in I$ and so $x \in \sqrt{I}$. Hence \sqrt{I} is an ideal of X. Now, let $x, y \in \sqrt{I}$. By a similar way as the proof of the last part, we can obtain $0 * x^{m n} \in I$ and $0 * y^{m n} \in I$, for some $m, n \in \mathbf{N}$. Hence, $0 *(x * y)^{m n}=\left(0 * x^{m n}\right) *\left(0 * y^{m n}\right) \in I$ and so $x * y \in \sqrt{I}$. Therefore, \sqrt{I} is a closed ideal of X.

Definition 2.8. An element x of X is called nilpotent if $0 * x^{n}=0$, for some $n \in \mathbb{N}$. The set of all nilpotent elements of X is denoted by $N(X)$ or $\sqrt{0}$.
Proposition 2.9. $\sqrt{0}$ is a closed ideal of X.
Proof. Since $I=\{0\}$ is a closed ideal of X, then by Theorem 2.7, $\sqrt{0}$ is a closed ideal of X.

Example 2.10. (i) Let $(G, ., e)$ be the cyclic group of order three, $X=(\mathbb{Z}, *, 0)$ and $Y=(G, *, e)$ be the adjoint $B C I$-algebras of the abelian groups $(\mathbb{Z},+, 0)$, and $(G, ., 0)$ respectively. Then by Theorem 1.13 , we have $X \times Y$ is a $B C H$ algebra. In $X \times Y$, we have $(0, e) *(x, e)^{n} \neq(0, e)$, for all $x \in \mathbb{Z} \backslash\{0\}$. Hence $(x, e) \notin \sqrt{(0, e)}$, for all $x \in \mathbb{Z} \backslash\{0\}$. Also, $(0, e) *(0, y)^{3}=(0, e)$, for all $y \in G$. Therefore, $\sqrt{(0, e)}$ is a proper ideal of $X \times Y$.
(ii) Let $X=(\mathbb{R}, *, 0)$ be the adjoint $B C I$-algebra of abelian group $(\mathbb{R},+, 0)$.

That is $x * y=x+(-y)$, for all $x, y \in \mathbb{R}$. Let $a \in \mathbb{Q}$, where \mathbb{Q} is the set of all rational numbers and $\langle\{a,-a\}\rangle$ be the ideal generated by $\{a,-a\}$. Then $\langle\{a,-a\}\rangle=\left\{x \in X \mid x * a^{n}=0\right.$, for some $\left.n \in \mathbb{N}\right\}=\{\ldots,-2 a,-a, 0, a, 2 a, 3 a, \ldots\}$ and so

$$
\begin{aligned}
\sqrt{\langle\{a,-a\}\rangle} & =\left\{x \in \mathbb{R} \mid 0 * x^{n} \in\langle\{a,-a\}\rangle, \exists n \in \mathbb{N}\right\} \\
& =\{x \in \mathbb{R} \mid-(n x)= \pm m a, \exists n, m \in \mathbb{N}\} \\
& =\left\{\left. \pm \frac{m}{n} a \right\rvert\, n, m \in \mathbb{N}\right\} \subseteq \mathbb{Q} .
\end{aligned}
$$

Therefore, $\sqrt{\langle\{a,-a\}\rangle}$ is a proper ideal of $(\mathbb{R}, *, 0)$.
In Proposition 2.11, we want to verify relation between \sqrt{I} and the set of all nilpotent elements of X / I, for any ideal I of X.

Proposition 2.11. Let X be a BCI-algebra, I be an ideal of X and I_{x} is an equivalence class of X containing x with respect to the congruence relation which is defined in Note 1.10, for any $x \in X$. Then $\sqrt{I}=\left\{x \in X \mid I_{x} \in\right.$ $N(X / I)\}$.

Proof. Let $x \in X$. Then

$$
\begin{aligned}
I_{x} \in N(X / I) & \Leftrightarrow I_{0} * I_{x}^{n}=I_{0}, \quad \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow I_{0 * x^{n}}=I_{0} \\
& \Leftrightarrow 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in I \\
& \Leftrightarrow x \in \sqrt{I} .
\end{aligned}
$$

Hence $\sqrt{I}=\left\{x \in X \mid I_{x} \in N(X / I)\right\}$.
Theorem 2.12. Let X be a $B C I$-algebra and I be an ideal of X. Then \sqrt{I} is a closed ideal of X.

Proof. Let $y, x * y \in \sqrt{I}$. Then by Proposition 2.11, $I_{x * y}, I_{y} \in N(X / I)$. By Proposition 2.9, we obtain $I_{x} \in N(X / I)$. Now, Proposition 2.11, implies $x \in$ \sqrt{I}. Hence \sqrt{I} is an ideal of X.
Let $x, y \in \sqrt{I}$. Then Proposition 2.11 implies that $I_{x}, I_{y} \in N(X / I)$. Now, by proposition 2.11, we have $I_{x * y}=I_{x} * I_{y} \in N(X / I)$. Therefore, $x * y \in \sqrt{I}$.

In the next proposition, we try to obtain some useful properties of radical in BCH -algebras.

Proposition 2.13. Let I and J be two ideals of X. Then the following assertions hold:
(i) If I is a closed ideal of X, then $I \subseteq \sqrt{I}$.
(ii) If $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
(iii) If I and J are closed, then $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(iv) If I is a closed or X is a BCI-algebra, then $\sqrt{\sqrt{I}}=\sqrt{I}$.
(v) Let Y be a BCH-algebra, and $f: X \rightarrow Y$ be a BCH-homomorphism. If I is an ideal of X and J is an ideal of Y, then $\sqrt{f^{-1}(J)}=f^{-1}(\sqrt{J})$ and $f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Moreover, if f is onto and $\operatorname{ker} f \subseteq I$, then $f(\sqrt{I})=\sqrt{f(I)}$.

Proof. (i) Let $x \in I$. Since I is closed, then $0 * x \in I$ and so $x \in \sqrt{I}$.
(ii) Straightforward.
(iii) Since I and J are closed ideals, $I \cap J$ is also a closed ideal. Now, let $x \in \sqrt{I \cap J}$. Then by Corollary 2.6(i), there is an $n \in \mathbb{N}$ such that $0 * x^{n}, 0 *$ $\left(0 * x^{n}\right) \in I \cap J$ and so $x \in \sqrt{I} \cap \sqrt{J}$. Hence, we have $\sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J}$. Let $x \in \sqrt{I} \cap \sqrt{J}$. Then, there exist $m, n \in \mathbb{N}$ such that $0 * x^{n} \in \sqrt{I}$ and $0 * x^{m} \in \sqrt{J}$. By using the proof of Theorem 2.7, we have $0 * x^{m n} \in I \cap J$. Since $I \cap J$ is a closed ideal of X, then $x \in \sqrt{I \cap J}$. Hence $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$. (iv) Let I be a closed ideal of X. Then by (i), $I \subseteq \sqrt{I}$ and so (ii), implies $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Now, let $x \in \sqrt{\sqrt{I}}$. Then there exists $n \in \mathbb{N}$ such that $0 * x^{n} \in \sqrt{I}$. Likewise, there is $m \in \mathbb{N}$ such that $0 *\left(0 * x^{n}\right)^{m} \in I$. By Lemma 2.1(ii), we have $0 *\left(0 * x^{m n}\right) \in I$. Since I is closed we obtain $0 * x^{m n}=0 *\left(0 *\left(0 * x^{m n}\right)\right) \in I$. Hence $x \in \sqrt{I}$, whence $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Now, let X be a $B C I$-algebra and I be an ideal of X. Then by (i), (ii), and Theorem 2.12, we have $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Let $J=\sqrt{I}$ and $x \in \sqrt{J}$. Then there exists $n \in \mathbb{N}$ such that, $0 * x^{n}, 0 *\left(0 * x^{n}\right) \in J$. Thus, $0 *\left(0 * x^{n}\right)^{m}, 0 *\left(0 *\left(0 * x^{n}\right)^{m}\right) \in I$, for some $m \in \mathbb{N}$. Also, by Lemma 2.1(ii), we have $0 *\left(0 * x^{n}\right)^{m}=0 *\left(0 * x^{n m}\right)$ and $0 *\left(0 *\left(0 * x^{n}\right)^{m}\right)=0 * x^{m n}$. Hence $0 * x^{m n}, 0 *\left(0 * x^{m n}\right) \in I$ and so $x \in \sqrt{I}=J$. Therefore, $\sqrt{J}=J$.
(v) Let $x \in X$. Then

$$
\begin{aligned}
x \in \sqrt{f^{-1}(J)} & \Leftrightarrow 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in f^{-1}(J), \quad \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow f(0) * f(x)^{n}, f(0) *\left(f(0) * f(x)^{n}\right) \in J, \quad \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow 0 * f(x)^{n}, 0 *\left(0 * f(x)^{n}\right) \in J, \quad \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow f(x) \in \sqrt{J} \Leftrightarrow x \in f^{-1}(\sqrt{J}) .
\end{aligned}
$$

Hence $f^{-1}(\sqrt{J})=\sqrt{f^{-1}(J)}$.
Let $b \in f(\sqrt{I})$. Then there exists $a \in \sqrt{I}$ such that $f(a)=b$ and so $0 * a^{n} \in$ I and $0 *\left(0 * a^{n}\right) \in I$, for some $n \in \mathbb{N}$. Since f is a homomorphism, we have $0 * f(a)^{n}, 0 *\left(0 * f(a)^{n}\right) \in f(I)$. Hence, $b=f(a) \in \sqrt{f(I)}$, whence $f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Now, let f be an onto homomorphism such that $\operatorname{ker} f \subseteq I$ and $y \in \sqrt{f(I)}$. Then there exists $m \in \mathbb{N}$ such that $0 * y^{m} \in f(I)$ and $0 *\left(0 * y^{m}\right) \in f(I)$. Since f is onto, then $y=f(x)$, for some $x \in X$ and so $f\left(0 * x^{m}\right)=0 * f(x)^{m}=0 * y^{m} \in f(I)$. Hence there is $b \in I$, such that $f\left(0 * x^{m}\right)=f(b)$ and so $f\left(\left(0 * x^{m}\right) * b\right)=f\left(0 * x^{m}\right) * f(b)=0$. It follows that $\left(0 * x^{m}\right) * b \in \operatorname{ker} f \subseteq I$. Since $b \in I$, then $0 * x^{m} \in I$. By a similar way we have $0 *\left(0 * x^{m}\right) \in I$ and so $x \in \sqrt{I}$. Therefore, $y=f(x) \in f(\sqrt{I})$, so $\sqrt{f(I)} \subseteq f(\sqrt{I})$.

Proposition 2.14. Let I and J be two closed ideals of $B C I$-algebra X. Then $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.

Proof. Since I, J are closed ideals, we have $I \subseteq \sqrt{I}$ and $J \subseteq \sqrt{J}$ and so $I+J \subseteq \sqrt{I}+\sqrt{J}$. Hence by Proposition 2.13(ii), $\sqrt{I+J} \subseteq \sqrt{\sqrt{I}+\sqrt{J}}$. Let $u \in \sqrt{\sqrt{I}+\sqrt{J}}$. Then $0 * u^{n} \in \sqrt{I}+\sqrt{J}$, for some $n \in \mathbb{N}$. By Theorem 1.4, there are $m \in \mathbb{N}$ and $a_{1}, \ldots, a_{m} \in \sqrt{I}$ such that

$$
\begin{equation*}
\left(\ldots\left(\left(0 * u^{n}\right) * a_{1}\right) * \ldots\right) * a_{m} \in \sqrt{J} \tag{1}
\end{equation*}
$$

By Corollary 2.6(ii), we can find $s \in \mathbb{N}$ such that $0 * a_{i}^{s} \in I$, for all $i \in$ $\{1,2, \ldots, m\}$. On the other hand, (1) implies there is $t \in \mathbb{N}$ such that $0 *$ $\left(\left(\ldots\left(\left(0 * u^{n}\right) * a_{1}\right) * \ldots\right) * a_{m}\right)^{t} \in J$. Since I and J are closed ideals of X, likewise the proof of Theorem 2.7, we have $0 * a_{i}^{t s} \in I$, for all $i \in\{1,2, \ldots, m\}$ and $0 *\left(\left(\ldots\left(\left(0 * u^{n}\right) * a_{1}\right) * \ldots\right) * a_{m}\right)^{t s} \in J$ and so by Lemma 1.6(ii),

$$
\left(\ldots\left(\left(0 *\left(0 * u^{n}\right)^{t s}\right) *\left(0 * a_{1}^{t s}\right)\right) * \ldots\right) *\left(0 * a_{m}^{t s}\right) \in J, \quad(2)
$$

Since I is an ideal of X and $0 * a_{i}^{t s} \in I$, for all $i \in\{1,2, \ldots, m\}$, then $0 *$ $\left(0 * u^{n}\right)^{s t} \in I+J$. Hence $0 * u^{n} \in \sqrt{I+J}$ and so $u \in \sqrt{\sqrt{I+J}}$. Hence by Proposition 2.13(iv), $u \in \sqrt{I+J}$. Summing up the above statements, we get $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.

The following example shows that if, I and J are not closed then, Proposition 2.14 may not be true.

Example 2.15. Let $X=(\mathbb{Z},-, 0)$ be the $B C I$-algebra in Example 2.10(i). Assume that $I=\{0,3,6,9, \ldots\}$ and $J=\{0,-3,-6,-9, \ldots\}$. Then clearly, I and J are ideals of X. Since $9,6 \in I$ and $6 * 9=-3 \notin I, I$ is not closed. By a similar way, we can deduced that J is not closed. Moreover,

$$
\begin{aligned}
\sqrt{I} & =\left\{x \in X \mid 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in I, \quad \text { for some } n \in \mathbb{N}\right\} \\
& =\{x \in X \mid n x,-n x \in I, \text { for some } n \in \mathbb{N}\} \\
& =\{0\}
\end{aligned}
$$

Similarly, we can obtain $\sqrt{J}=\{0\}$. Therefore, $\sqrt{\sqrt{I}+\sqrt{J}}=\sqrt{\{0\}}=\{0\}$. Also we have

$$
\begin{aligned}
I+J=\langle\{3,-3\}\rangle & =\left\{x \in \mathbb{Z} \mid x * a^{n}=0, \text { for some } n \in \mathbb{N}, a \in\{3,-3\}\right\} \\
& =\{\ldots,-6,-3,0,3,6, \ldots\}
\end{aligned}
$$

Hence $\sqrt{I+J}=\left\{x \in \mathbb{Z} \mid 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in I+J\right.$, for some $\left.n \in \mathbb{N}\right\}=\mathbb{Z}$. Therefore, $\sqrt{I+J} \neq \sqrt{\sqrt{I}+\sqrt{J}}$.

Proposition 2.16. Let M be a maximal ideal of a $B C I$-algebra X such that M is closed. Then $\sqrt{M}=X$.

Proof. Since M is a closed ideal of X, then by Theorem 1.12, $\{M / M, X / M\}$ is the set of all ideals of X / M. Hence all ideal of X / M are closed $(M / M$ is a zero ideal of X / M and so it is closed). Thus, by Theorem $1.3, X / M$ is nilpotent and so

$$
\forall x \in X, \exists n \in N \text { such that } M_{0} * M_{x}^{n}=M_{0} \Rightarrow M_{0 * x^{n}}=M_{0}
$$

Hence for all $x \in X, 0 * x^{n} \in M$ and so $\sqrt{M}=X$.
In the next example, we will show that if the ideal M is not closed, then Proposition 2.16 may not be true, in general.

Example 2.17. Let X be the $B C I$-algebra in Example 2.15, and let $M=$ $\mathbb{N} \cup\{0\}$. Clearly, M is not closed (Since $2 * 3=2-3=-1$) and M is a maximal ideal of X (See [21], Example 5.3.2). Let $x \in X$. Then

$$
\begin{aligned}
x \in \sqrt{M} & \Leftrightarrow 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in M \\
& \Leftrightarrow 0-n x \in M \text { and } 0-(0-n x) \in M \\
& \Rightarrow n x,-n x \in M \\
& \Leftrightarrow x=0
\end{aligned}
$$

Therefore, $\sqrt{M}=\{0\}$.
By Note 1.10, if I is an ideal of $B C I$-algebra X, then the relation $\theta=$ $\{(x, y) \in X \times X \mid x * y, y * x \in I\}$, is a congruence relation of X, but it is not true for $B C H$-algebra in general case.

Example 2.18. Let $X=\{0, a, b, c, d, e, f, g, h, i, j, k\}$. Define the binary operation "*" on X by the following table:

Table 2												
$*$	0	a	b	c	d	e	f	g	h	i	j	k
0	0	0	0	0	0	0	0	0	h	h	h	h
a	a	0	a	0	a	0	a	0	h	h	h	h
b	b	b	0	0	f	f	f	f	i	h	k	k
c	c	b	a	0	g	f	g	f	i	h	k	k
d	d	d	0	0	0	0	d	d	j	h	h	j
e	e	e	a	0	a	0	e	d	j	h	h	j
f	f	f	0	0	0	0	0	0	k	h	h	h
g	g	f	a	0	a	0	a	0	k	h	h	h
h	0	0	0	0								
i	i	i	h	h	k	k	k	k	b	0	f	f
j	j	j	k	k	k	k	j	j	d	0	0	d
k	k	k	h	h	h	h	h	h	f	0	0	0

Then $(X, *, 0)$ is a $B C H$-algebra (See [2] Example 7). Let $I=\{0, b, d, f\}$. Clearly, I is an ideal of X. Let $\theta=\{(x, y) \in X \times X \mid x * y, y * x \in I\}$. Then $c * a=b$ and $a * c=0$ and so $(a, c) \in \theta$. Moreover, $e * c=0$ and $c * e=f$ and so $(e, c) \in \theta$. But, $(c * c, e * a)=(0, e) \notin \theta$. It follows that θ is not a congruence relation on X.

Definition 2.19. [18] A translation ideal of X is an ideal U of X such that:
$\forall x, y, z \in X, x * y \in U, y * x \in U \Rightarrow(x * z) *(y * z) \in U,(z * x) *(z * y) \in U$.
Remark 2.20. Let U be a translation ideal of $B C H$-algebra X. Then the relation θ, was defined in Note 1.10 , is a congruence relation on X. By U_{x} we denote the equivalence class containing x and by X / U we denote the set of all equivalence classes with respect to this congruence relation. Then $\left(X / U, *, U_{0}\right)$ is a $B C H$-algebra, where $U_{x} * U_{y}=U_{x * y}$, for all $x, y \in X$. Moreover, kerf is a translation ideal for any $B C H$-homomorphism f (See [18]).

Dudek and Jun in [6], prove that if U is a translation ideal of X, then so is $\sqrt[n]{U}$, for any $n \in \mathbb{N}$. In Theorem 2.21, we will show that if I is a closed ideal of X, then $\sqrt[n]{I}$ is a translation ideal of X, for any $n \in \mathbb{N}$.

Theorem 2.21. Let I be a closed ideal of X. Then,
(i) $\sqrt[n]{I}$ is a translation ideal of X, for all $n \in \mathbb{N}$.
(ii) \sqrt{I} is a translation ideal of X.

Proof. (i) Let $x, y, z \in I$, such that $x * y, y * x \in \sqrt[n]{I}$. Then $0 *(x * y)^{n} \in I$ and $0 *(y * x)^{n} \in I$. By Lemma 1.9, we have
$\left(\left[\left(0 *\left(0 * x^{n}\right)\right) *\left(0 *\left(0 * z^{n}\right)\right)\right] *\left[\left(0 *\left(0 * y^{n}\right)\right) *\left(0 *\left(0 * z^{n}\right)\right)\right]\right) *\left[\left(0 *\left(0 * x^{n}\right)\right) *\left(0 *\left(0 * y^{n}\right)\right)\right]=0$.
Since I is a closed ideal, then $0 *\left(0 *(x * y)^{n}\right) \in I$ and so by Lemma 1.6(ii), $\left(0 *\left(0 * x^{n}\right)\right) *\left(0 *\left(0 * y^{n}\right)\right) \in I$. Hence $\left[\left(0 *\left(0 * x^{n}\right)\right) *\left(0 *\left(0 * z^{n}\right)\right)\right] *[(0 *(0 *$ $\left.\left.\left.y^{n}\right)\right) *\left(0 *\left(0 * z^{n}\right)\right)\right] \in I$. Now, since I is closed, then $0 *\left(\left[\left(0 *\left(0 * x^{n}\right)\right) *(0 *(0 *\right.\right.$ $\left.\left.\left.\left.z^{n}\right)\right)\right] *\left[\left(0 *\left(0 * y^{n}\right)\right) *\left(0 *\left(0 * z^{n}\right)\right)\right]\right) \in I$, so Lemma 2.1(i) and 1.6, imply that

$$
0 *((x * z) *(y * z))^{n}=\left[\left(0 * x^{n}\right) *\left(0 * z^{n}\right)\right] *\left[\left(0 * y^{n}\right) *\left(0 * z^{n}\right)\right] \in I
$$

Hence, $(x * z) *(y * z) \in \sqrt[n]{I}$. By a similar way, $(z * x) *(z * y) \in \sqrt[n]{I}$. Thus, $\sqrt[n]{I}$ is a translation ideal of X.
(ii) Let $x, y, z \in X$ such that $x * y, y * x \in \sqrt{I}$. By Corollary 2.6(ii), there is $n \in \mathbb{N}$ such that $x * y, y * x \in \sqrt[n]{I}$ and so by (i), $(x * z) *(y * z),(z * x) *(z * y) \in \sqrt[n]{I}$. Hence, by Corollary 2.6(i), $(x * z) *(y * z),(z * x) *(z * y) \in \sqrt{I}$. Therefore, \sqrt{I} is a translation ideal of X.

Corollary 2.22. Let I be a closed ideal of X. Then $\left(X / \sqrt{I}, *,(\sqrt{I})_{0}\right)$ is a BCH-algebra.

Proof. By Theorem 2.21, \sqrt{I} is a translation ideal of X, so by Remark 2.20, $(X / \sqrt{I}, *, 0)$ is a $B C H$-algebra.

In Corollary 2.22, we proved that if I is a closed ideal of X, then X / \sqrt{I} is a $B C H$-algebra. In the next proposition we show that it has no non zero nilpotent elements.

Proposition 2.23. Let J be a closed ideal of X and $I=\sqrt{J}$. Then $B C H$ algebra $\left(X / I, *, I_{0}\right)$ does not have any non zero nilpotent elements.

Proof. Let $I_{x} \in X / \sqrt{0}$. Then
I_{x} is nilpotent $\Leftrightarrow I_{0} * I_{x}^{n}=I_{0}$, for some $n \in \mathbb{N} \quad \Leftrightarrow \quad I_{0 * x^{n}}=I_{0}$

$$
\Leftrightarrow \quad 0 * x^{n}, 0 *\left(0 * x^{n}\right) \in I
$$

Therefore, $0 *\left(0 * x^{n}\right)^{m} \in J$ and $0 *\left(0 *\left(0 * x^{n}\right)\right)^{t} \in J$, for some $n, t \in \mathbb{N}$. By $0 *\left(0 * x^{n}\right)^{m} \in J$ and Lemma 2.1(ii), one has $0 *\left(0 * x^{m n}\right) \in J$. Also by Lemma2.1 and 1.6(i), the following hold:

$$
\begin{equation*}
0 *(0 * x)^{m n}=0 *\left(0 * x^{m n}\right) \in J \tag{1}
\end{equation*}
$$

By $0 *\left(0 *\left(0 * x^{n}\right)\right)^{t} \in J$ and Lemma 1.6(i), we have

$$
0 *\left(0 *\left(0 * x^{n t}\right)=0 *\left(0 *\left(0 * x^{n}\right)^{t}\right)=0 *\left(0 *\left(0 * x^{n}\right)\right)^{t} \in J\right.
$$

and so Lemma 2.1(i), implies that

$$
\begin{equation*}
0 *\left(0 *\left(0 * x^{n t}\right)=0 * x^{n t} \in J\right. \tag{2}
\end{equation*}
$$

It follows from (1),(2) and Corollary 2.4 that $0 * x, x \in \sqrt{J}=I$. Thus $I_{0}=I_{x}$. Therefore, I_{0} is the only nilpotent element of X / I.

Proposition 2.24. For any $x, y, z \in X$, we have $((x * y) *(x * z)) *(z * y) \in$ $N(X)$. Moreover, $\{((x * y) *(x * z)) *(z * y) \mid x, y, z \in X\} \subseteq \sqrt{I}$, for all ideal I of X.

Proof. Let $x, y, z \in X$. Then Lemma 1.6(i), implies
$0 *(((x * y) *(x * z)) *(z * y))=(((0 * x) *(0 * y)) *((0 * x) *(0 * z))) *((0 * z) *(0 * y))$.
By Lemma 1.9, $f_{0}(X)$ is a $B C I$-algebra, thus

$$
(((0 * x) *(0 * y)) *((0 * x) *(0 * z))) *((0 * z) *(0 * y))=0
$$

Therefore, $0 *(((x * y) *(x * z)) *(z * y))=0$. That is $(((x * y) *(x * z)) *(z * y)) \in$ $N(X)$. Now, let I be an ideal of X. Then by Proposition 2.13(ii), $N(X) \subseteq \sqrt{I}$ and so $\{((x * y) *(x * z)) *(z * y) \mid x, y, z \in X\} \subseteq \sqrt{I}$. It completes the proof of this proposition.

Corollary 2.25. Let I be a closed ideal of X. Then $\left(X / J, *, J_{0}\right)$ is a P semisimple $B C I$-algebra, where $J=\sqrt{I}$.

Proof. By Corollary 2.22, $\left(X / J, *, J_{0}\right)$ is a $B C H$ - algebra. Let $J_{x}, J_{y}, J_{z} \in$ X / J. Then

$$
\left(\left(J_{x} * J_{y}\right) *\left(J_{x} * J_{z}\right)\right) *\left(J_{z} * J_{y}\right)=J_{((x * y) *(x * z)) *(z * y)} .
$$

By Proposition 2.24, $((x * y) *(x * z)) *(z * y) \in J$. Since J is a closed ideal of X, we obtain $J_{((x * y) *(x * z)) *(z * y)}=J_{0}$. Hence $\left(\left(J_{x} * J_{y}\right) *\left(J_{x} * J_{z}\right)\right) *\left(J_{z} * J_{y}\right)=$ J_{0}. It follows that $\left(X / J, *, J_{0}\right)$ is a $B C I$-algebra. Now, by Proposition 2.23, $\left(X / J, *, J_{0}\right)$ does not have any nilpotent element and so $B C K$-part of X / J is the set $\left\{I_{0}\right\}$. Therefore, $\left(X / J, *, J_{0}\right)$ is a P-semisimple $B C I$-algebra.

Remark 2.26. We know that each abelian group induces a P-semisimple $B C I$ algebra and the opposite process is still true (See [21]). Hence Corollary 2.25, implies for any closed ideal I of $B C H$-algebra X we can find an abelian group. It is $(X / J,$.$) , where J=\sqrt{I}$ and $J_{x} . J_{y}=J_{x *(0 * y)}$, for all $x, y \in X$.

Theorem 2.27. Let I and J be two ideals of X, such that $I \subseteq J$ and let I be a translation ideal of X. Then J / I is an ideal of X, where $J / I=\left\{I_{x} \mid x \in J\right\}$. Moreover, $I_{x} \in J / I$ if and only if $x \in J$ (See [18]).

Theorem 2.28. Let H be a subalgebra of X and K be a closed ideal of X. Then $\frac{H \sqrt{K}}{\sqrt{K}} \cong \frac{H}{H \cap \sqrt{K}}$, where $H \sqrt{K}=\bigcup\left\{(\sqrt{K})_{h} \mid h \in H\right\}$.

Proof. Let $I=\sqrt{K}$. By Theorem 2.7, I is a closed ideal of X and so $I_{0}=$ $\{x \in X \mid x * 0,0 * x \in I\}=I$. Hence $I \subseteq H \sqrt{K}$. If $x, y \in H \sqrt{K}$, then there are $a, b \in H$ such that $x \in I_{a}$ and $y \in I_{b}$ and so $I_{x}=I_{a}$ and $I_{y}=I_{b}$. Hence $x * y \in I_{x * y}=I_{a * b}$ and $a * b \in H$. It follows that $x * y \in H \sqrt{K}$, so $H \sqrt{K}$ is a subalgebra of X containing \sqrt{K}. Thus by Corollary $2.22, \frac{H \sqrt{K}}{\sqrt{K}}$ is a $B C H$ algebra. Since \sqrt{K} is a translation ideal of X, then $H \cap \sqrt{K}$ is a translation ideal of H and so by Remark $2.20, \frac{H}{H \cap \sqrt{K}}$ is a $B C H$-algebra. Define $\varphi: H \rightarrow H I$ by $\varphi(h)=I_{h}$, for all $h \in H$. It is easily seen that, φ is a homomorphism. Let $I_{x} \in \frac{H I}{I}$. Then there exists $h \in H$ such that $x \in I_{h}$. Therefore, $I_{x}=I_{h}$ and so $I_{x}=\varphi(x)=\varphi(h)$. Thus φ is epimorphism. Moreover,

$$
x \in \operatorname{ker} \varphi \Leftrightarrow I_{x}=\varphi(x)=I_{0} \Leftrightarrow x * 0 \in I \Leftrightarrow x \in H \cap I .
$$

Therefore, $\operatorname{Ker}(\varphi)=H \cap I$. Now, by Theorem 1.11, we have $\frac{H \sqrt{K}}{\sqrt{K}} \cong \frac{H}{H \cap \sqrt{K}}$.

Theorem 2.29. Let K and A be two closed ideals of X and $A \subseteq K$. Suppose that $\sqrt{K} / \sqrt{A}=\left\{(\sqrt{A})_{x} \mid x \in \sqrt{K}\right\}$. Then $\frac{X}{\sqrt{K}} \cong \frac{X / \sqrt{A}}{\sqrt{K} / \sqrt{A}}$.
Proof. By Corollary 2.22, $\frac{X}{\sqrt{K}}$ and $\frac{X}{\sqrt{A}}$ are $B C H$-algebras. Now, let $f: \frac{X}{\sqrt{A}} \rightarrow$ $\frac{X}{\sqrt{K}}$ be defined by $(\sqrt{A})_{x} \mapsto(\sqrt{K})_{x}$. If $(\sqrt{A})_{x}=(\sqrt{A})_{y}$, for $x, y \in X$, then $x * y, y * x \in \sqrt{A}$. Since $A \subseteq K$, by Proposition 2.13(ii), we have $x * y, y *$ $x \in \sqrt{K}$. Hence $(\sqrt{K})_{x}=(\sqrt{K})_{y}$. Thus f is well defined. Clearly, f is
an epimorphic. Now, let $(\sqrt{A})_{x} \in \operatorname{Ker}(f)$. Then $(\sqrt{K})_{x}=(\sqrt{K})_{0}$ and so $x \in \sqrt{K}$. Hence $(\sqrt{A})_{x} \in \sqrt{K} / \sqrt{A}$. On the other hand, if $(\sqrt{A})_{x} \in \sqrt{K} / \sqrt{A}$, then $x \in \sqrt{K}$. Since \sqrt{K} is closed, we have $(\sqrt{K})_{x}=(\sqrt{K})_{0}$. Hence $(\sqrt{A})_{x} \in$ $\operatorname{Ker}(f)$. Therefore, $\operatorname{Ker}(f)=\sqrt{K} / \sqrt{A}$. Now, by Theorem 1.11, we have $\frac{X}{\sqrt{K}} \cong \frac{X / \sqrt{A}}{\sqrt{K} / \sqrt{A}}$.

Acknowledgement. The authors would like to express their sincere thanks to the referees for their valuable comments and suggestions.

References

1. A. Borumand Saeid , Redefined fuzzy subalgebra (with thresholds) of $B C K / B C I$ algebras, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 9-24.
2. A. Borumand saeid and A. Namdar, On n-fold Ideals in BCH-algebras and Computation Algorithms, World Applied Sciences Journal, 7, (2009), 64-69.
3. M. A. Chaudhry and H. Fakhar-ud-din, On some classes of $B C H$-algebras, IJMMS, 25(3), (2001), 205-211.
4. M. A. Chaudhry and H. Fakhar-ud-din, Some Categorical Aspects of BCH-Algebras, IJMMS, 27, (2003), 1739-1750.
5. K. H. Dar and M. Akram, On Endomorphism of BCH-Algebra, Annals of University of Craiova, Comp. Sci. Ser, 33, (2006), 227-234.
6. W. A. Dudek and Y. B. Jun, Radical Theory in BCH-Algebras, Algebra and Discrete Mathematics, 1, (2002), 69-78.
7. W. A. Dudek and R. Rousseau, Set Theoretics Relations and BCH-Algebras With Trivial Structure, Univ. uNovom Sadu Zb. Rad. Prirod.-Mat. Fak. ser. Mat, 25 (1), (1995), 7582.
8. S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian Journal of Mathematical Sciences and Informatics, 5(2), (2010), 13-24.
9. M. Golmohamadian and M. M. Zahedi, $B C K$-algebras and hyper $B C K$-algebras induced by deterministic finite automaton, Iranian Journal of Mathematical Sciences and Informatics, 4(1), (2009), 79-98.
10. Q. P. Hu and X. Li , On BCH-algebras, Math. Seminar Notes, 11 , (1983), 313-320.
11. Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica, 30 , (1985), 659-661.
12. W. P. Huang, Nil-Radical in BCI-Algebras, Math. Japonica, 37, (1992), 363-366.
13. Y. Imai and K. Iséki, On Axiom System of Propositional Calculi, XIV, Japan Acad, 42, (1966), 19-22.
14. K. Iséki, An Algebra Rrelated With a Propositional Calculus, Japan Acad, 42, (1966), 26-29.
15. Y. B. Jun, A Note on Nil Ideals in BCI-Algebras, Math. Japonica, 38, (1993), 1017-1021.
16. Y. B. Jun and E. H. Roh, Nil Subsets in BCH-Algebras, East Asian Math. Japonica, 22, (2006), 207-213.
17. E. H. Roh, Radical Approach in BCH-Algebras, IJMMS, 70, (2004), 3885-3888.
18. E. H. Roh, S. Y. Kim and Y. B. Jun, On a Proplem in BCH-Algebras, Math. Japonica, 52 (2),(2000), 279-283.
19. T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, Iranian Journal of Mathematical Sciences and Informatics, 4(2), (2009), 1-8.
20. T. Roudbari and M. M. Zahedi, Some result on simple hyper K-algebras, Iranian Journal of Mathematical Sciences and Informatics, 3(2), (2008), 29-48.
21. H. Yisheng, BCI-algebra, Science Press, China, (2006).

[^0]: * Corresponding Author

 Received 10 December 2011; Accepted 24 April 2012
 (c)2013 Academic Center for Education, Culture and Research TMU

