Iranian Journal of Mathematical Sciences and Informatics
Vol. 6, No. 1 (2011), pp 1-6
DOI: 10.7508/ijmsi.2011.01.001

## Left Jordan derivations on Banach algebras

A. Ebadian ${ }^{a}$ and M. Eshaghi Gordjib ${ }^{\text {b }}$, ${ }^{\text {| }}$<br>${ }^{a}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran<br>${ }^{b}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran<br>E-mail: a.ebadian@urmia.ac.ir<br>E-mail: madjid.eshaghi@gmail.com


#### Abstract

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d: \mathcal{A} \rightarrow \mathcal{M}$ from a von Neumann algebra $\mathcal{A}$ into a Banach $\mathcal{A}$-module $\mathcal{M}$ with property that $d\left(p^{2}\right)=2 p d(d)$ for every projection $p$ in $\mathcal{A}$ is a left Jordan derivation.


Keywords: Left Jordan derivation, von Neumann algebra.

2000 Mathematics subject classification: Primary 46L10; Secondary 46L05, 46H25, 46L57.

## 1. Introduction

Let $\mathcal{A}$ be a unital Banach algebra. We denote the identity of $\mathcal{A}$ by 1. A Banach $\mathcal{A}$-module $\mathcal{M}$ is called unital provided that $1 x=x=x 1$ for each $x \in \mathcal{M}$. A linear (additive) mapping $d: \mathcal{A} \rightarrow \mathcal{M}$ is called a left derivations (left ring derivation) if

$$
\begin{equation*}
d(a b)=a d(b)+b d(a) \quad(a, b \in \mathcal{A}) \tag{1}
\end{equation*}
$$

[^0]Received 21 July 2009; Accepted 12 April 2010 (c)2011 Academic Center for Education, Culture and Research TMU

Also, $d$ is called a left Jordan derivation (or Jordan left derivation) if

$$
\begin{equation*}
d\left(a^{2}\right)=2 a d(a) \quad(a \in \mathcal{A}) \tag{2}
\end{equation*}
$$

Bresar, Vukman [4, Ashraf et al. [1, 2], Jung and Park [8, Vukman [13, 14 studied left Jordan derivations and left derivations on prime rings and semiprime rings, which are in a close connection with so-called commuting mappings (see also [7, 10, [11, 12]).

Suppose that $\mathcal{A}$ is a Banach algebra and $\mathcal{M}$ is an $\mathcal{A}$-module. Let $S$ be in A. We say that $S$ is a left separating point of $\mathcal{M}$ if the condition $S m=0$ for $m \in \mathcal{M}$ implies $m=0$.

We refer to [3] for the general theory of Banach algebras.
Theorem 1.1. Let $\mathcal{A}$ be a unital Banach algebra and $\mathcal{M}$ be a Banach $\mathcal{A}$-module. Let $S$ be in $\mathcal{Z}(\mathcal{A})$ such that $S$ is a left separating point of $\mathcal{M}$. Let $f: \mathcal{A} \rightarrow \mathcal{M}$ be a bounded linear map. Then the following assertions are equivalent
a) $f(a b)=a f(b)+b f(a)$ for all $a, b \in \mathcal{A}$ with $a b=b a=S$.
b) $f$ is a left Jordan derivation which satisfies $f(S a)=S f(a)+a f(S)$ for all $a \in \mathcal{A}$.

Proof. First suppose that (a) holds. Then we have

$$
f(S)=f(1 S)=f(S) 1+f(1) S=f(S)+f(1) S
$$

hence, by assumption, we get that $f(1)=0$. Let $a \in \mathcal{A}$. For scalars $\lambda$ with $|\lambda|<\frac{1}{\|a\|}, 1-\lambda a$ is invertible in $\mathcal{A}$. Indeed, $(1-\lambda a)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} a^{n}$. Then

$$
\begin{aligned}
f(S) & =f\left[(1-\lambda a)(1-\lambda a)^{-1} S\right]=\left((1-\lambda a)^{-1} S\right) f((1-\lambda a)) \\
& +(1-\lambda a) f\left((1-\lambda a)^{-1} S\right) \\
& =-\lambda\left(\sum_{n=0}^{\infty} \lambda^{n} a^{n} S\right) f(a)+(1-\lambda a) f\left(\sum_{n=1}^{\infty} \lambda^{n} a^{n} S\right) \\
& =f(S)+\sum_{n=1}^{\infty} \lambda^{n}\left[f\left(a^{n} S\right)-a^{n-1} S f(a)-a f\left(a^{n-1} S\right)\right]
\end{aligned}
$$

So

$$
\sum_{n=1}^{\infty} \lambda^{n}\left[f\left(a^{n} S\right)-a^{n-1} S f(a)-a f\left(a^{n-1} S\right)\right]=0
$$

for all $\lambda$ with $|\lambda|<\frac{1}{\|a\|}$. Consequently

$$
\begin{equation*}
f\left(a^{n} S\right)-a^{n-1} S f(a)-a f\left(a^{n-1} S\right)=0 \tag{3}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Put $n=1$ in (3) to get

$$
\begin{equation*}
f(S a)=f(a S)=a f(S)+S f(a) \tag{4}
\end{equation*}
$$

for all $a \in \mathcal{A}$.

Now, put $n=2$ in (3) to get
$f\left(a^{2} S\right)=a S f(a)+a f(a S)=a S f(a)+a(a f(S)+S f(a))=a^{2} f(S)+2 S a f(a)$.

Replacing $a$ by $a^{2}$ in (4), we get

$$
\begin{equation*}
f\left(a^{2} S\right)=a^{2} f(S)+S f\left(a^{2}\right) \tag{6}
\end{equation*}
$$

It follows from (5), (6) that

$$
\begin{equation*}
S\left(f\left(a^{2}\right)-2 a f(a)\right)=0 \tag{7}
\end{equation*}
$$

On the other hand $S$ is right separating point of $\mathcal{M}$. Then by (7), $f$ is a left Jordan derivation.

Now suppose that the condition (b) holds. We denote $a o b:=a b+b a$ for all $a, b \in \mathcal{A}$. It follows from left Jordan derivation identity that

$$
\begin{equation*}
f(a o b)=2(b f(a)+a f(b)) \tag{8}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ (see proposition 1.1 of (4). On the other hand, we have

$$
a \circ(a \circ b)=a \circ(a b+b a)=a^{2} \circ b+2 a b a
$$

for all $a, b \in \mathcal{A}$. Then

$$
\begin{aligned}
2 f(a b a) & =f(a \circ(a \circ b))-f\left(a^{2} \circ b\right) \\
& =2[(a \circ b) f(a)+a f(a \circ b)]-2\left[b f\left(a^{2}\right)+a^{2} f(b)\right] \\
& =2[(a b+b a) f(a)+2 a(b f(a)+a f(b))]-2\left[2 b a f(a)+a^{2} f(b)\right] \\
& =6 a b f(a)+2 a^{2} f(b)-2 b a f(a) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
f(a b a)=3 a b f(a)+a^{2} f(b)-b a f(a) \tag{9}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Now suppose that $a b=b a=S$, then

$$
\begin{equation*}
f(S a)=3 a b f(a)+a^{2} f(b)-b a f(a)=2 a b f(a)+a^{2} f(b) \tag{10}
\end{equation*}
$$

On the other hand $S \in \mathcal{Z}(\mathcal{A})$. Then by multiplying both sides of (10) by $b$ to get

$$
\begin{equation*}
S f(S)-S b f(a)-S a f(b)=0 \tag{11}
\end{equation*}
$$

since $S \in \mathcal{Z}(\mathcal{A})$, then it follows from (11) that

$$
[f(S)-f(a) b-f(b) a] S=0
$$

then we have

$$
f(S)=f(a) b+f(b) a
$$

Now, we characterize the left Jordan derivations on von Neumann algebras.

Theorem 1.2. Let $\mathcal{A}$ be a von Neumann algebra and let $\mathcal{M}$ be a Banach $\mathcal{A}-$ module and $d: \mathcal{A} \rightarrow \mathcal{M}$ be a bounded linear map with property that $d\left(p^{2}\right)=$ $2 p d(p)$ for every projection $p$ in $\mathcal{A}$. Then $d$ is a left Jordan derivation.

Proof. Let $p, q \in \mathcal{A}$ be orthogonal projections in $\mathcal{A}$. Then $p+q$ is a projection wherefore by assumption,

$$
\begin{aligned}
2 p d(p)+2 q d(q) & =d(p)+d(q)=d(p+q)=2(p+q) d(p+q) \\
& =2[p d(p)+p d(q)+q d(q)+q d(p)]
\end{aligned}
$$

It follows that

$$
\begin{equation*}
p d(q)+q d(p)=0 \tag{12}
\end{equation*}
$$

Let $a=\sum_{j=1}^{n} \lambda_{j} p_{j}$ be a combination of mutually orthogonal projections $p_{1}, p_{2}, \ldots, p_{n} \in \mathcal{A}$. Then we have

$$
\begin{equation*}
p_{i} d\left(p_{j}\right)+p_{j} d\left(p_{i}\right)=0 \tag{13}
\end{equation*}
$$

for all $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$. So

$$
\begin{equation*}
d\left(a^{2}\right)=d\left(\sum_{j=1}^{n} \lambda_{j}^{2} p_{j}\right)=\sum_{j=1}^{n} \lambda_{j}^{2} d\left(p_{j}\right) \tag{14}
\end{equation*}
$$

On the other hand by (13), we obtain that

$$
\begin{aligned}
a d(a) & =\left(\sum_{i=1}^{n} \lambda_{i} p_{i}\right) \sum_{j=1}^{n} \lambda_{j} d\left(p_{j}\right)=\lambda_{1} p_{1} \sum_{j=1}^{n} \lambda_{j} d\left(p_{j}\right) \\
& +\lambda_{2} p_{2} \sum_{j=1}^{n} \lambda_{j} d\left(p_{j}\right)+\ldots+\lambda_{n} p_{n} \sum_{j=1}^{n} \lambda_{j} d\left(p_{j}\right) \\
& =\sum_{j=1}^{n} \lambda_{j}^{2} p_{j} d\left(p_{j}\right) .
\end{aligned}
$$

It follows from above equation and (14) that $d\left(a^{2}\right)=2 a d(a)$. By the spectral theorem (see Theorem 5.2.2 of [9), every self adjoint element $a \in \mathcal{A}_{\text {sa }}$ is the norm-limit of a sequence of finite combinations of mutually orthogonal projections. Since $d$ is bounded, then

$$
\begin{equation*}
d\left(a^{2}\right)=2 a d(a) \tag{15}
\end{equation*}
$$

for all $a \in \mathcal{A}_{s a}$. Replacing $a$ by $a+b$ in (15), we obtain

$$
\begin{gather*}
d\left(a^{2}+b^{2}+a b+b a\right)=2(a+b)(d(a)+d(b) \\
=2 a d(a)+2 b d(b)+2 a d(b)+2 b d(a) \\
d(a b+b a)=2 a d(b)+2 b d(a) \tag{16}
\end{gather*}
$$

for all $a, b \in \mathcal{A}_{s a}$. Let $a \in \mathcal{A}$. Then there are $a_{1}, a_{2} \in \mathcal{A}_{s a}$ such that $a=a_{1}+i a_{2}$. Hence,

$$
\begin{aligned}
d\left(a^{2}\right) & =d\left(a_{1}^{2}+a_{2}^{2}+i\left(a_{1} a_{2}+a_{2} a_{1}\right)\right) \\
& =2 a_{1} d\left(a_{1}\right)+2 a_{2} d\left(a_{2}\right)+i\left[2 a_{1} d\left(a_{2}\right)+2 a_{2} d\left(a_{1}\right)\right] \\
& =2 a d(a)
\end{aligned}
$$

This completes the proof of theorem.
Corollary 1.3. Let $\mathcal{A}$ be a von Neumann algebra and let $\mathcal{M}$ be a Banach $\mathcal{A}$-module and $d: \mathcal{A} \rightarrow \mathcal{M}$ be a bounded linear map. Then the following assertions are equivalent
a) $a d\left(a^{-1}\right)+a^{-1} d(a)=0$ for all invertible $a \in \mathcal{A}$.
b) $d$ is a left Jordan derivation.
c) $d\left(p^{2}\right)=2 p d(p)$ for every projection $p$ in $\mathcal{A}$.

Proof. $(a) \Leftrightarrow(b)$ follows from Theorem 1.1, and $(b) \Leftrightarrow(c)$ follows from Theorem 1.2 .

In 1996, Johnson [6] proved the following theorem (see also Theorem 2.4 of [5]).

Theorem 1.4. Suppose $\mathcal{A}$ is a $C^{*}-$ algebra and $\mathcal{M}$ is a Banach $\mathcal{A}$-module. Then each Jordan derivation $d: \mathcal{A} \rightarrow \mathcal{M}$ is a derivation.

We do not know whether or not every left Jordan derivation on a $C^{*}$-algebra is a left derivation.

## References

[1] M. Ashraf, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math., 25(3), (2001), 379-382.
[2] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc., 45(2), (2008), 253-261.
[3] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973.
[4] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110, (1990), 7-16.
[5] U. Haagerup and N. Laustsen, Weak amenability of $C^{*}$-algebras and a theorem of Goldstein, Banach algebras '97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
[6] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc., 120, (1996), 455-473.
[7] K. W. Jun and B. D. Kim, A note on Jordan left derivations, Bull. Korean Math. Soc., 33(2), (1996), 221-228.
[8] Y.S. Jung and K.H. Park, Left Jordan derivations on Banach algebras and related mappings, Bull. Korean Math. Soc., 47(1), (2010), 151-157.
[9] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, I-II, Academic Press, 1983-1986.
[10] H. M. Kim, S. Y. Kang and I. S. Chang, On functional inequalities originating from module Jordan left derivations, Journal of Inequalities and Applications, 2008, Article ID 278505, 9 pages doi:10.1155/2008/278505.
[11] K. H. Park and Y. S. Jung, Jordan derivations and Jordan left derivations of Banach algebras, Commun. Korean Math. Soc., 17(2), (2002), 245-252.
[12] J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequationes Math., 75, (2008) 260-266.
[13] J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ., 39 (1997), 1-6.
[14] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math., 11(2), (2007), 367-370.


[^0]:    * Corresponding Author

