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Abstract. Let (X, d) be a metric space and J ⊆ (0,∞) be a nonempty
set. We study the structure of the arbitrary intersection of vector-valued
Lipschitz algebras, and define a special Banach subalgebra of ∩{Lipγ(X,E) :

γ ∈ J}, where E is a Banach algebra, denoted by ILipJ (X,E). Mainly,
we investigate C−character amenability of ILipJ (X,E).
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1. Introduction

Let (X, d) be a metric space and B(X) indicates the Banach space consisting
of all bounded complex valued functions on X, endowed with the norm

∥f∥∞ = sup
x∈X

|f(x)| (f ∈ B(X)).

Take α ∈ R with α > 0, then LipαX is a subspace of B(X) consisting of all
bounded complex-valued functions f on X such that

pα(f) := sup

{
|f(x)− f(y)|

d(x, y)α
: x, y ∈ X, x ̸= y

}
< ∞. (1.1)
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It is well known that LipαX endowed with the norm ∥.∥α given by

∥f∥α = pα(f) + ∥f∥∞;

and pointwise product is a unital commutative Banach algebra, called Lipschitz
algebra.

In [1], the authors showed that {LipαX}α is a decreasing net respect to
relation ” ⊆ ”. They investigated intersections of Lipschitz algebras and ob-
tained a necessary and sufficient condition for equality of Lipschitz algebras
and B(X). They did a detailed study, concerning the structure of Lipschitz
spaces LipαX. Moreover, they investigated arbitrary intersections of Lipschitz
algebras, denoted by ∩α∈JLipαX, where J is an arbitrary subset of (0,∞).
Then they introduced a special subset of ∩α∈JLipαX, denoted by ILipJX,
which is defined as the set of all functions f in ∩α∈JLipαX such that

∥f∥J = sup
α∈J

∥f∥α < ∞.

They proved that if MJ = sup{α : α ∈ J} < ∞, then ILipJX = LipMJ
X, and

for each f ∈ ILipJX
∥f∥J
3

≤ ∥f∥MJ
≤ 3∥f∥J .

In fact ∥.∥J defines a norm on ILipJX, equivalent to the norm ∥.∥MJ
. They also

studied ∩α∈JLipαX, for the case where MJ = ∞ and introduced an especial
subspace of ∩α∈JLipαX, denoted by Lip∞X, as

Lip∞X = {f ∈ ∩α∈JLipαX : ∥f∥Lip∞X < ∞}

,for which
∥f∥Lip∞X = sup

α>0
∥f∥α.

They showed that Lip∞X is a Banach space, endowed with the norm ∥.∥Lip∞X .
Furthermore, they considered Lipschitz spaces as Banach algebras associated
with pointwise product, and studied C−character amenability of Lipschitz al-
gebras. In [2], they fully investigated the structure of lipαX, for any metric
space (X, d) and α > 0. They showed that if 0 < α < β < ∞, then

lipβX ⊆ LipβX ⊆ lipαX ⊆ LipαX, (1.2)

and all these inclusions can be proper. The inclusions (1.2) lead them to
obtain the structure of arbitrary intersections of lipαX, whenever α runs into
J ⊆ (0,∞). They also introduced and studied IlipJX and lip∞X, analogous
to ILipJX and Lip∞X.
Moreover, Hu, Monfared and Traynor investigated character amenability of
Lipschitz algebras, see [11]. They showed that if X is an infinite compact
metric space and 0 < α < 1, then LipαX is not character amenable. Moreover,
recently, C−character amenability of Lipschitz algebras were studied by Dashti,
Nasr Isfahani and Soltani for each α > 0, see [7]. In fact, as a generalization
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of [13], they showed that for α > 0 and any, locally compact metric space
X, the algebra LipαX is C−character amenable, for some C > 0 if and only
if X is uniformly discrete. In [3] they investigated the extensions of Lipschitz
functions. In fact they found conditions that a function can extend such that its
norm have least increasing. Also they showed that under some conditions every
f ∈ LipαX0 (X0 ⊆ X), can be extended to a function f ∈ LipαX, preserving
Lipschitz norm. In another part of the paper they studied the Lipschitz version
of Urysohn‘s lemma.
Let (X, d) be a metric space and (E, ∥.∥) be a Banach space over the scalar
field F(= R or C). For a constant α > 0 and a function f : X −→ E, set

pα,E(f) := sup
x ̸=y

∥f(x)− f(y)∥E
d(x, y)α

,

is called the Lipschitz constant of f . For any metric space (X, d), any Banach
algebra E and any α > 0, we define the Lipschitz algebra Lipα(X,E) by

Lipα(X,E) := {f ∈ B(X,E) : pα,E(f) < ∞},
with pointwise multiplication and norm

∥f∥α,E := pα,E(f) + ∥f∥∞,E .

where
B(X,E) = {f : X → E : ∥f∥∞,E < ∞}

and
∥f∥∞,E = sup

x∈X
∥f(x)∥E .

The Lipschitz algebra lipα(X,E) is the subalgebra of Lipα(X,E) defined by

lipα(X,E) = {f ∈ Lipα(X,E) :
∥f(x)− f(y)∥E

d(x, y)α
−→ 0 as d(x, y) −→ 0}.

If X is a locally compact metric space, then lip0α(X,E) is the subalgebra of
lipα(X,E) consisting of those functions whose are zero at infinity. In [6], they
showed that lip0α(X,E)∗∗ = Lipα(X,E∗∗) as Banach algebra, whenever the
linear space generated by character space ∆(E) in normed-dense in E∗. Note
that for every Banach algebra A, ∆(A) denotes the spectrum (character space)
of A consisting of all nonzero multiplicative linear functionals on A.
It is clear that the Lipschitz algebra Lipα(X,E) contains the space Cons(X,E)

consisting of all constant E−valued functions on X. The Lipschitz algebras
were first considered by [4, 12, 15]. There are valuable works related to some no-
tions of amenability of Lipschitz algebras. Gourdeau [9, 10] discussed amenabil-
ity of vector-valued Lipschitz algebras.

In [5], they studied approximate and character amenability of vector-valued
Lipschitz algebras.
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In this paper, we study an arbitrary intersection of vector-valued Lipschitz
algebras, denoted by ILipJ(X,E). In fact for an arbitrary subset J of (0,∞)

let
∥f∥J,E = sup

α∈J
∥f∥α,E

ILipJ(X,E) := {f ∈ ∩α∈JLipα(X,E) : ∥f∥J,E < ∞}
and

IlipJ(X,E) := {f ∈ ∩α∈J lipα(X,E) : ∥f∥J,E < ∞}.
Now suppose that MJ = sup{α : α ∈ J}, then we show that if MJ < ∞, then

ILipJ(X,E) = LipMJ
(X,E)

and if MJ = ∞, then

ILipJ(X,E) = Lip∞(X,E)

for which

Lip∞(X,E) := {f ∈ ∩α>0Lipα(X,E) : ∥f∥Lip∞,E(X,E) < ∞}

,where
∥f∥Lip∞,E(X,E) = sup

α>0
∥f∥α,E .

We obtain a necessary and sufficient condition for amenability of Lip∞(X,E),
as Banach algebra under pointwise multiplication.
Also we state that whenever the Lipschitz algebras are equal. In the rest of the
paper, we show that if E is a Banach algebra and f be an arbitrary function,
then f ∈ Lip∞(X,E) if and only if σ◦f ∈ Lip∞X for every σ ∈ E∗. In the last
section we study Lip∞(X,E). In fact we show that Lip∞(X,E) = B(X,E)

with equivalent norms if and only if X is ϵ−uniformly discrete, for some ϵ ≥ 1.
Recall that (X, d) is called ε−uniformly discrete, for some ε > 0, if

d(x, y) ≥ ε (x, y ∈ X,x ̸= y).

2. The structure of Lipschitz algebra Lipα(X,E)

Let (X, d) be a metric space and α > 0. It is easy to show that Lipα(X,E),
lipα(X,E) and lip0α(X,E) are vector spaces, Banach space and Banach algebra,
whenever E is so, respectively.
The purpose of this section is studying the structure of Lipα(X,E), where
α > 0. We investigate conditions related to equality of two Lipschitz algebras.
We show that if 0 < α < β, then

lipβ(X,E) ⊆ Lipβ(X,E) ⊆ lipα(X,E) ⊆ Lipα(X,E).

Also we obtain another criteria for the norms of Lipα(X,E) and B(X,E) by
considering dual space E∗. Finally we find a necessary and sufficient condition
for which a function be in Lipschitz algebra Lipα(X,E).
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Lemma 2.1. Let (X, d) be a metric space, E be a Banach algebra and
0 ≤ α, β ≤ 1. Then the following statements are equivalent:

(1) Lipα(X,E) = Lipβ(X,E), with equivalent norms.
(2) lipα(X,E) = lipβ(X,E), with equivalent norms.
(3) X is uniformly discrete or α = β.

Proof. (1) ⇒ (3): Suppose that Lipα(X,E) = Lipβ(X,E) and α ̸= β. We
show that X is uniformly discrete. Without less of generality suppose that
α < β. By using [5, Corollary 2.3] we have

Lipβ(X,E) ⊆ lipα(X,E) ⊆ Lipα(X,E) = Lipβ(X,E).

Consequently Lipα(X,E) = lipα(X,E). By using [5, Lemma 2.8], we have
LipαX = lipαX. Now by using [12, Lemma 2.5], it follows that X is uniformly
discrete space.
(3) ⇒ (1, 2): It is obtained By using [5, Theorem 2.10].
(2) ⇒ (3): Suppose that lipα(X,E) = lipβ(X,E) and α ̸= β. We show that
X is uniformly discrete. Without less of generality, suppose that α < β. By
using [5, Corollary 2.3] we have

Lipβ(X,E) ⊆ lipα(X,E) = lipβ(X,E) ⊆ Lipβ(X,E).

Consequently Lipβ(X,E) = lipβ(X,E). By using [5, Lemma 2.8], we have
LipβX = lipβX. Now by using [12, Lemma 2.5], it follows that X is uniformly
discrete space. □

If we eliminate the condition 0 < α, β ≤ 1, then the above lemma is not
valid. For instance note that to the following example:

Example 2.2. Let X := R with d(x, y) = |x− y|, for every x, y ∈ R.
α = 2, β = 3 and E := C. Then by using [5, Example 2.5], we have
Lipα(X,E) = Lipβ(X,E) but neither α = β nor X is uniformly discrete.

Remark 2.3. Note that if (X, d) is a metric space ,with at least two elements,
and 0 < α ≤ 1, then Cons(X) ̸= LipαX. Suppose f : X → C be defined
by f(x) = min{1, dα(x, a0)}, such that a0 is a fixed element of X. Then
f ∈ LipαX − Cons(X). In fact LipαX separates points of X.

If X is a metric space, then D(X) denotes the set of all cluster points of X.

Lemma 2.4. Let X be a nonzero normed space. Then
(1) D(X) = X,
(2) X is not uniformly discrete,
(3) Lipα(X,E) $ B(X,E), for each Banach space E ̸= {0} and α > 0.

Proof. (1): Let x ∈ X and ϵ > 0. Then there exists n ∈ N such that 1/n < ϵ.
Put

y = x+
1

2n
.

y0
1 + ∥y0∥
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for some 0 ̸= y0 ∈ X. Hence ∥x− y∥ < ϵ. So x ∈ D(X).
(2), (3) are obtained by definition and [5, Theorem 2.10]. □

By [5, Example 2.5, Theorem 2.10], remark (2.3) and lemma (2.4), the fol-
lowing corollary is immediate.

Corollary 2.5. Let X be a nonzero normed space, E be a Banach algebra and
α > 0. Then

(1) If α > 1, then Lipα(X,E) = Cons(X,E).
(2) If 0 < α ≤ 1, then Cons(X,E) $ Lipα(X,E) $ B(X,E).

Proposition 2.6. Let X be a nonzero normed space and α, β be two distinct
positive numbers. Then LipαX = LipβX if and only if α, β > 1.

Proof. If α, β > 1, then [2, Proposition 2.9] follows that
LipαX = LipβX = Cons(X). Conversely, suppose that LipαX = LipβX.
Then according to [2, Proposition 2.9] and remark (2.3), we obtain that the
case where one of α, β is less than or equal 1 and another is greater than
1, can not be hold. Also if α, β ≤ 1, then by lemma (2.1), X is uniformly
discrete. In other hand by lemma (2.4), X is not uniformly discrete. That is a
contradiction. Therefore we must have α, β > 1. □

The following example shows that Proposition (2.6) does not hold for metric
space.

Example 2.7. Let X be as defined in [2, Theorem 2.10], α = 4 and β = 3.
Then by [2, Proposition 3.1] and [2, Theorem 2.10],

Lip4X ⊆ lip3X $ Lip3X.

So Lip4X ̸= Lip3X.

Proposition 2.8. Let (X, d) be a metric space, E be a Banach algebra and
0 < α < β. Then

lipβ(X,E) ⊆ Lipβ(X,E) ⊆ lipα(X,E) ⊆ Lipα(X,E)

and
∥f∥α,E ≤ 3∥f∥β,E (f ∈ Lipβ(X,E)).

Proof. At first, we prove the inequality of norms. Suppose that f ∈ Lipβ(X,E).
Consider two following cases:

(i) If d(x, y) ≥ 1, then

∥f(x)− f(y)∥E ≤ 2∥f∥∞,Ed
α(x, y) ≤ 2∥f∥β,Edα(x, y).

(ii) If d(x, y) < 1, then

∥f(x)− f(y)∥E ≤ pβ,E(f)d
β(x, y) ≤ 2∥f∥β,Edα(x, y).
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Therefore in each case we have:
∥f(x)− f(y)∥E

dα(x, y)
≤ 2∥f∥β,E

Consequently pα,E(f) ≤ 2∥f∥β,E . And finally

∥f∥α,E ≤ 3∥f∥β,E .

.
By using a similar argument as in [2, Proposition 3.1] one can show that,
Lipβ(X,E) ⊆ lipα(X,E). Other inclusions are obvious by using definition. □

Lemma 2.9. Let (X, d) be a metric space, E be a Banach algebra, α > 0 and
f : X → E be an arbitrary function. Then

(1) ∥f∥∞,E = sup{∥σ ◦ f∥∞ : σ ∈ E∗ and ∥σ∥ ≤ 1}.
(2) pα,E(f) = sup{pα(σ ◦ f) : σ ∈ E∗ and ∥σ∥ ≤ 1}.
(3) ∥f∥α,E = sup{∥σ ◦ f∥α : σ ∈ E∗ and ∥σ∥ ≤ 1}.

Proof. Suppose that σ ∈ E∗.
(1) For every x ∈ X,

|σ ◦ f(x)| ≤ ∥σ∥∥f(x)∥E .

Therefore whenever ∥σ∥ ≤ 1, we have ∥σ ◦ f∥∞ ≤ ∥f∥∞,E . Conse-
quently

sup{∥σ ◦ f∥∞ : ∥σ∥ ≤ 1} ≤ ∥f∥∞,E .

Conversely if x ∈ X, then by using the Hahn-Banach Theorem [8,
Theorem 5.7], there exists σx ∈ E∗ such that ∥σx∥ ≤ 1 and
σx(f(x)) = ∥f(x)∥E . Therefore

∥f∥∞,E = sup{∥f(x)∥E : x ∈ X}
= sup{σx(f(x)) : x ∈ X}
≤ sup{|σ(f(x))| : ∥σ∥ ≤ 1 and x ∈ X}
= sup{∥σ ◦ f∥∞ : ∥σ∥ ≤ 1}.

Hence the equality is hold.
(2) Suppose that α > 0. Then we have

pα(σ ◦ f) = sup
x̸=y

|σ ◦ f(x)− σ ◦ f(y)|
dα(x, y)

≤ sup
x ̸=y

|σ(f(x)− f(y))|
dα(x, y)

≤ ∥σ∥ sup
x ̸=y

∥f(x)− f(y)∥E
dα(x, y)

= ∥σ∥pα,E(f).
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Therefore sup{pα(σ ◦ f) : ∥σ∥ ≤ 1} ≤ pα,E(f). Conversely for every
x, y ∈ X there exists σx,y ∈ E∗ such that
σx,y(f(x)− f(y)) = ∥f(x)− f(y)∥ and ∥σx,y∥ ≤ 1. Therefore

pα,E(f) = sup{∥f(x)− f(y)∥E
dα(x, y)

: x ̸= y}

= sup{σx,y(f(x)− f(y))

dα(x, y)
: x ̸= y}

≤ sup{ |σ(f(x))− σ(f(y))|
dα(x, y)

: ∥σ∥ ≤ 1 and x ̸= y}

= sup{pα(σ ◦ f) : ∥σ∥ ≤ 1}.

(3) By using (1) and (2),

∥f∥α,E = sup{∥σ ◦ f∥α : σ ∈ E∗, ∥σ∥ ≤ 1}.

□

By using the principle of uniform boundedness theorem, the following lemma
is immediate.

Lemma 2.10. Let (X, d) be a metric space and E be a Banach algebra. For
every σ ∈ E∗, define Tσ

Tσ : B(X,E) → B(X) (resp. Tσ : Lipα(X,E) → Lipα(X))

such that for every f ∈ B(X,E) (resp. Lipα(X,E))

Tσ(f) := σ ◦ f.

Then {Tσ}∥σ∥≤1 is a family of continuous linear functionals such that

sup
∥σ∥≤1

∥Tσ∥ < ∞

In fact for every σ ∈ E∗, we have

∥Tσ∥ ≤ ∥σ∥.

Proposition 2.11. Let (X, d) be a metric space, E be a Banach algebra, α > 0

and f : X → E be an arbitrary function. Then the following statements are
equivalent:

(1) f ∈ B(X,E) (resp. Lipα(X,E)),
(2) σ ◦ f ∈ B(X) (resp. LipαX), for each σ ∈ E∗.

Proof. If f = 0, then the conclusion is obvious. Now suppose that f ̸= 0 and
consider two following cases:
(i) If f ∈ B(X,E) and σ ∈ E∗, then it is obvious that σ ◦ f ∈ B(X).
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Conversely, suppose that σ ∈ E∗ such that σ ◦ f ̸= 0. Therefore σ ◦ f ∈ B(X).
Also let p ∈ X such that f(p) ̸= 0. Define

0 ̸= z :=
f(p)

∥f(p)∥E∥σ ◦ f∥∞
∈ E.

Therefore by Hahn-Banach Theorem there exists σ ∈ E∗ such that ∥σ∥ ≤ 1

and σ(z) = 1. Now define the function f : X → E as following:

f(x) := (σ ◦ f(x)).z (x ∈ X).

Clearly

∥f∥∞,E ≤ ∥σ ◦ f∥∞∥z∥E =
∥σ ◦ f∥∞∥f(p)∥E
∥f(p)∥E∥σ ◦ f∥∞

= 1 (2.1)

So f ∈ B(X,E). Also obviously we have σ ◦ f = σ ◦ f . Consequently by using
lemmas (2.9) and (2.10),

∥f∥∞,E = sup{∥σ ◦ f∥∞ : ∥σ∥ ≤ 1}
= sup{|σ ◦ f(x)| : ∥σ∥ ≤ 1 and x ∈ X}
≤ sup{|σ ◦ h(x)| : ∥σ∥ ≤ 1, ∥h∥∞,E ≤ 1 and x ∈ X}
= sup{∥σ ◦ h∥∞ : ∥σ∥ ≤ 1 and ∥h∥∞,E ≤ 1}
= sup{∥Tσ(h)∥∞ : ∥σ∥ ≤ 1 and ∥h∥∞,E ≤ 1}
≤ sup{∥Tσ∥ : ∥σ∥ ≤ 1}
< ∞.

Therefore f ∈ B(X,E).

(ii) If f ∈ Lipα(X,E) and σ ∈ E∗, then it is obvious that σ ◦ f ∈ LipαX.
Conversely suppose that σ ∈ E∗, such that σ◦f ̸= 0. Therefore σ◦f ∈ LipαX.
Also let p ∈ X such that f(p) ̸= 0. Put

0 ̸= z :=
f(p)

∥f(p)∥E∥σ ◦ f∥α
∈ E.

Let σ and f be such as case (i). Then:

pα,E(f) = sup
x̸=y

∥f(x)− f(y)∥E
dα(x, y)

= sup
x̸=y

∥(σ ◦ f(x)).z − (σ ◦ f(y)).z∥E
dα(x, y)

= ∥z∥E sup
x ̸=y

∥σ ◦ f(x)− σ ◦ f(y)∥E
dα(x, y)

= ∥z∥E pα(σ ◦ f).

Thus the inequality (2.1) and equality (2.2) follow that ∥f∥α,E ≤ 1. So
f ∈ Lipα(X,E). Clearly as in (i), σ ◦ f = σ ◦ f . Since for every σ ∈ E∗,
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σ ◦ f ∈ LipαX ⊆ B(X), thus by using (i), f ∈ B(X,E). Also we have by using
lemmas (2.9) and (2.10),

pα,E(f) = sup{pα(σ ◦ f) : ∥σ∥ ≤ 1}

= sup{ |σ ◦ f(x)− σ ◦ f(y)|
dα(x, y)

: x ̸= y and ∥σ∥ ≤ 1}

≤ sup{ |σ ◦ h(x)− σ ◦ h(y)|
dα(x, y)

: ∥σ∥ ≤ 1, ∥h∥α,E ≤ 1 and x ̸= y}

= sup{ |Tσ(h)(x)− Tσ(h)(y)|
dα(x, y)

: ∥σ∥ ≤ 1, ∥h∥α,E ≤ 1 and x ̸= y}

= sup{pα(Tσ(h)) : ∥σ∥ ≤ 1 and ∥h∥α,E ≤ 1}
≤ sup{∥Tσ(h)∥ : ∥σ∥ ≤ 1 and ∥h∥α,E ≤ 1}
≤ sup{∥σ∥∥h∥α,E : ∥σ∥ ≤ 1 and ∥h∥α,E ≤ 1}
≤ 1.

So f ∈ Lipα(X,E). □

3. The structure of the algebra Lip∞(X,E)

Let (X, d) be a metric space, E be a Banach algebra and J ⊆ (0,∞) be
a nonempty set. In this section we study the structure and properties of
ILipJ(X,E), whenever MJ = ∞. For this purpose, we define Lip∞(X,E)

as following. Let

Lip∞(X,E) = {f ∈ ∩α>0Lipα(X,E) : ∥f∥Lip∞(X,E) < ∞}

where
∥f∥Lip∞(X,E) := sup

α>0
∥f∥α,E = p∞,E(f) + ∥f∥∞,E

such that
p∞,E(f) := sup

α>0
pα,E(f).

Note that by definition,

Lip∞(X,E) = {f : X → E : ∥f∥Lip∞(X,E) < ∞}.

We obtain two necessary and sufficient conditions for that a function be-
longs in Lip∞(X,E). Also we find conditions related to equality Lip∞(X,E)

and B(X,E) or Cons(X,E). Finally we show that whenever Lip∞(X,E) is
amenable. We begin this section with an elementary proposition.
By a similar argument as used in [1, Theorem 3.3], the following is immediate.

Proposition 3.1. Let (X, d) be a metric space and E be a Banach algebra.
Then Lip∞(X,E) is a Banach algebra, endowed with the norm ∥.∥Lip∞(X,E)

and pointwise multiplication.

Such as lemma (2.9) we have the next lemma for Lip∞(X,E). Its proof is
obtained by taking supremum over α > 0 by using (3) of that lemma.



Some properties of vector-valued Lipschitz algebras 201

Lemma 3.2. Let (X, d) be a metric space, E be a Banach algebra and
f : X → E be a function. Then

∥f∥Lip∞(X,E) = sup{∥σ ◦ f∥Lip∞X : σ ∈ E∗ and ∥σ∥ ≤ 1}.

The following lemma is obtained by a similar argument as is used in
[1, Corollary 2.4, Theorem 2.5, Proposition 3.1].

Lemma 3.3. Let (X, d) be a metric space, E be a Banach algebra and
J ⊆ (0,+∞). Then

(1) If MJ < ∞, then:
∥f∥J,E

3
≤ ∥f∥MJ ,E ≤ 3∥f∥J,E .

(2) If MJ = ∞, then:

∥f∥J,E ≤ ∥f∥Lip∞(X,E) ≤ 3∥f∥J,E .

And
∩α∈JLipα(X,E) = ∩α>0Lipα(X,E).

We know state the main result of this section. The following theorem is
immediate by using lemma (3.3).

Theorem 3.4. Let (X, d) be a metric space, E be a Banach algebra and
J ⊆ (0,+∞). Then:

(1) If MJ < ∞, then:

ILipJ(X,E) = LipMJ
(X,E), with equivalent norms.

(2) If MJ = ∞, then:

ILipJ(X,E) = Lip∞(X,E), with equivalent norms.

The next proposition is very useful in calculating Lip∞(X,E). The proof of
two next propositions is similar to [1, Propositions 3.5, 3.7].

Proposition 3.5. Let (X, d) be a metric space and E be a Banach algebra.
Then:

Lip∞(X,E) = {f ∈ B(X,E) : d(x, y) < 1 ⇒ f(x) = f(y)}.

Example 3.6. If (X, d) is a metric space such that

diam(X) := sup{d(x, y) : x, y ∈ X} < 1

and E is Banach algebra, then Lip∞(X,E) = Cons(X,E).

Corollary 3.7. Let (X, d) be a metric space and E be a Banach algebra. Then
(1) If X is σ-compact and f ∈ Lip∞(X,E), then f has countable range.
(2) If X is compact and f ∈ Lip∞(X,E), then f has finite range.



202 M. Azizi , E. Biyabani , A. Rejali

Example 3.8. (1) If X is σ-compact, α > 0 and f ∈ Lipα(X,E), then
it is not necessary that f has countable range. Suppose f : R → R
defined by f(x) = x. Then it is obvious that f ∈ Lip1(R) and X is
σ−compact, but f has not countable range.

(2) If X is compact, α > 0 and f ∈ Lipα(X,E), then it is not necessary
that f has finite range. Suppose f : [0, 1] → R defined by f(x) = x.
Then f ∈ Lip1(R) and X is compact, but f has not finite range.

Proposition 3.9. Let (X, d) be a metric space, E be a Banach algebra and
f : X → E be a function. Then the following statements are equivalent:

(1) f ∈ Lip∞(X,E),

(2) σ ◦ f ∈ Lip∞(X) for each σ ∈ E∗.

Proof. (2)⇒ (1): Suppose that for every σ ∈ E∗, σ◦f ∈ Lip∞X. Therefore for
every α > 0, σ ∈ E∗ we have σ ◦ f ∈ LipαX. Proposition (2.11) follows that
f ∈ Lipα(X,E) for every α > 0. So f ∈ ∩α>0Lipα(X,E). Now suppose that
f /∈ Lip∞(X,E), by using Proposition (3.5), there exist x, y ∈ X such that
d(x, y) < 1 and f(x) ̸= f(y). Hence by Hahn-Banach theorem, there exists
σ0 ∈ E∗ such that σ0(f(x)) ̸= σ0(f(y)). By hypothesis, σ0 ◦ f ∈ Lip∞X,
therefore [1, proposition 3.5] follows that σ0(f(x)) = σ0(f(y)). That is a
contradiction. Consequently f(x) = f(y) and by using proposition (3.5),
f ∈ Lip∞(X,E).
(1)⇒ (2): Suppose that f ∈ Lip∞(X,E) and σ ∈ E∗. By definition
f ∈ Lipα(X,E) for every α > 0. Therefore by using proposition (2.11),
σ ◦ f ∈ LipαX for every α > 0. Consequently σ ◦ f ∈ ∩α>0LipαX. Also if
d(x, y) < 1, then by using proposition (3.5), f(x) = f(y). So σ◦f(x) = σ◦f(y).
Now [1, proposition 3.5] follows that σ ◦ f ∈ Lip∞X. □

The next theorem provides a necessary and sufficient condition for equality
of Lip∞(X,E) with B(X,E).

Theorem 3.10. Let (X, d) be a metric space, E ̸= {0} be a Banach alge-
bra. Then Lip∞(X,E) = B(X,E), with equivalent norms if and only if X is
ε−uniformly discrete, for some ε ≥ 1.

Proof. Suppose that X is not ϵ−uniformly discrete for each ϵ ≥ 1. Thus there
exist two distinct elements x0 and x1 in X such that d(x0, x1) < 1. Take z to
be a nonzero element of E and define the function g : X → E by

g(x) =

{
0 if x = x0

z if x ̸= x0.

Then for each α > 0, we have

pα,E(g) = sup
x ̸=x0

∥g(x)− g(x0)∥E
d(x, x0)α

≥ ∥z∥E
d(x1, x0)α

.
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Consequently

sup
α>0

pα,E(g) ≥ sup
α>0

∥z∥E
(d(x1, x0))α

= ∞,

and so g /∈ Lip∞(X,E). Therefore Lip∞(X,E) & B(X,E). Conversely, sup-
pose that X is ε−uniformly discrete, for some ε ≥ 1. Thus for each f ∈ B(X,E)

we have

p∞,E(f) = sup
α≥0

sup
x ̸=y

∥f(x)− f(y)∥E
d(x, y)α

≤ sup
α≥0

2∥f∥∞,E

εα
≤ 2∥f∥∞,E .

It follows that f ∈ Lip∞(X,E) and

∥f∥∞,E ≤ ∥f∥Lip∞(X,E) ≤ 3∥f∥∞,E .

This completes the proof. □

We know state a criteria for amenability of Lip∞(X,E).

Theorem 3.11. Let (X, d) be a metric space, E be a Banach algebra with
∆(E) ̸= ∅ and J ⊆ (0,∞). Also suppose that ILipJ(X,E) separates the points
of X. Then:

(1) If MJ < ∞, then ILipJ(X,E) is amenable if and only if E is amenable
and X is uniformly discrete.

(2) If MJ = ∞, then ILipJ(X,E) is amenable if and only if E is amenable
and X is ϵ−uniformly discrete for some ϵ ≥ 1.

Proof. (1) It is obvious by using Theorem (3.4) and [5, Theorem 4.3].
(2) By using Theorem (3.4), we know that ILipJ(X,E) = Lip∞(X,E).

Suppose Lip∞(X,E) is amenable and x0 ∈ X. Define the function
ϕ : Lip∞(X,E) → E by f → f(x0). Then ϕ is a linear and epimor-
phism. by using [14, Proposition 2.3.1], E is amenable. Suppose that
σ ∈ ∆(E), then for every x ∈ X define ϕx : Lip∞(X,E) → C by
ϕx(f) = σ ◦ f(x). Therefore ϕx is a nonzero linear multiplicative func-
tional. Thus ϕx ∈ ∆(Lip∞(X,E)). Also since Lip∞(X,E) separates
the points of X it follows that ϕx ̸= ϕy whenever x ̸= y. Now [9, Corol-
lary 2] follows that ∆(Lip∞(X,E)) is uniformly discrete. Therefore
there exists ϵ > 0 such that 0 < ϵ ≤ ∥ϕx−ϕy∥A∗ and A = Lip∞(X,E).
Otherwise for every α > 0,

|ϕx(f)− ϕy(f)| = |σ ◦ f(x)− σ ◦ f(y)|
≤ ∥σ∥∥f(x)− f(y)∥
≤ ∥σ∥pα,E(f)dα(x, y).

Furthermore for every α > 0,

∥f∥A = sup
β>0

∥f∥β,E ≥ ∥f∥α,E ≥ pα,E(f).
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Therefore

ϵ ≤ ∥ϕx − ϕy∥A∗

= sup
∥f∥A≤1

|ϕx(f)− ϕy(f)|

≤ sup
∥f∥A≤1

∥σ∥pα,E(f)dα(x, y).

Hence for every α > 0, we have

d(x, y) ≥ (
ϵ

∥σ∥
)

1
α .

By tending α to infinity, we obtain d(x, y) ≥ 1. Therefore X is ϵ-
uniformly discrete, for some ϵ ≥ 1.
Conversely, since X is uniformly discrete, by theorem (3.10),

Lip∞(X,E) = B(X,E) = B(X)⊗̂E.

Since E and B(X) are amenable, therefore Lip∞(X,E) is too.
□

Note that the above theorem is true when we change amenability by char-
acter amenability.

Remark 3.12. All results of this paper are valid for Banach algebras lipα(X,E)

or IlipJ(X,E), except Theorem (3.4) and Proposition (2.6).
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