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Abstract. Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n}.
For g ∈ Sn let fix(g) denote the number of fixed points of g. A subset
S of Sn is called t-transitive if for any two t-tuples (x1, x2, . . . , xt) and
(y1, y2, . . . , yt) of distinct elements of [n], there exists g ∈ S such that
xg
i = yi for any 1 ≤ i ≤ t and additionally S is called sharply t-transitive

if for any given pair of t-tuples, exactly one element of S carries the first
to the second. In addition, a subset S of Sn is called t-intersecting if
fix(h−1g) ≥ t for any two distinct permutations h and g of S. In this
paper, we prove that there are only two sharply (n−2)-transitive subsets
of Sn and finally we establish some relations between sharply k-transitive
subsets and t-intersecting subsets of Sn where k, t ∈ Z and 0 ≤ t ≤ k ≤ n.
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1. Introduction

Let Sn be the symmetric group on the set [n] = { 1, 2, . . . , n} . For each
g ∈ Sn, a point x is called a fixed point of g if g(x) = x and fix(g) denotes
the number of fixed points of g. In addition for each non-empty subset L

of { 0, 1, 2, . . . , n − 2} , a subset S of Sn is called L-intersecting if, for any
two distinct permutations h and g of S we have fix(h−1g) ∈ L and any L-
intersecting subset S of Sn is called t-intersecting where L = {t, t + 1, t +

2, . . . , n− 2}.
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Furthermore each subset S of Sn is called t-transitive if for any two t-tuples
(x1, x2, . . . , xt) and (y1, y2, . . . , yt) of distinct elements of [n], there exists g ∈ S

such that
1 ≤ i ≤ t : xg

i = yi.

Additionally S is called sharply t-transitive if for any given pair of t-tuples,
exactly one element of S carries the first to the second. It is not difficult to
prove that for each t-transitive subset S and each sharply t-transitive subset
S1 of Sn we have

|S| ≥ n!

(n− t)!
= |S1|.

The following theorem is proved by P. J. Cameron, M. Deza and P. Frankl
in [3]:

Theorem 1.1. Let L = { 0, 1, 2, . . . , t− 1} and S be an L-intersecting subset
of Sn . Then

|S| ≤ n!

(n− t)!

and the equality holds if and only if S is a sharply t-transitive subset of Sn.

In [1], the authors studied invertible sharply t-transitive subsets of Sn. A
subset of Sn is said to be invertible if it contains the identity and if whenever
it contains a permutation it also contains its inverse. The following theorem is
one of the main results of [1]:

Theorem 1.2. Let G be an invertible sharply d-transitive permutation set on
a finite set X. If d ≥ 6 then G is either Sd, Sd+1 or Ad+2. If d = 5 then G is
either S5, S6, A7 or the Mathieu group of degree 12. If d = 4 then G is either
S4, S5, A6 or the Mathieu group of degree 11.

Our main result in this paper is about the structure of a sharply (n − 2)-
transitive subset of Sn. Let S be a sharply (n− 2)-transitive subset of Sn. By
Theorem 1.1, S is an L-intersecting subset of Sn , where L = {0, 1, 2, . . . , n−3},
and S has n!

2
elements. In Theorem 3.1 we will prove that there exist only two

sharply (n− 2)-transitive subsets of Sn.

2. Preliminary Notes

To prove the main results in the next section we need some definitions and
lemmas about Cayley graphs.

Definition 2.1. For each g ∈ Sn , the set Fix(g) = {x ∈ [n] : g(x) = x} is the
fixed point set of g and the set Supp(g) = {x ∈ [n] : g(x) 6= x} = [n]− Fix(g)

is called the support set of g.
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Let f and g be two permutations of [n], k ∈ N and k ≤ n. Then by Definition
2.1 we have {x ∈ [n] : f(x) = g(x)} = Fix(g−1f) and {x ∈ [n] : f(x) 6= g(x)} =

Supp(g−1f).

Definition 2.2. Let S be a subset of a group G such that 1 /∈ S and S = S−1.
The Cayley graph Γ(G,S) associated with G and S is defined to have vertex set
G and a vertex f is joined to a vertex g if g−1f ∈ S or equivalently f−1g ∈ S

( Since S = S−1 it follows that g−1f ∈ S ⇐⇒ (g−1f)−1 = f−1g ∈ S ).

The following properties of Cayley graphs are well known and proofs can be
found, for example, in page 241 of [2].

Lemma 2.3. (i) Γ = Γ(G,S) is connected if and only if S generates G.
(ii) For each g ∈ G, the map ρg : x 7→ g−1x is an automorphism of Γ and

{ρg : g ∈ G} ∼= G.
(iii) dΓ(f, g) = dΓ(hf, hg) where h ∈ G, and f and g are two vertices of Γ.

Lemma 2.4. Let n be a positive integer and S be the set of all transpositions
of [n]. Then

(i) Γ = Γ(Sn, S) is a bipartite graph.
(ii) diam(Γ) = n− 1 and so Γ is connected and dΓ(f, g) ≤ n− 1 for any two

vertices f and g of Γ.
(iii) Γ is Hamiltonian when n ≥ 3.

Proof. (i) It is easy to check that Γ is bipartite with bipartition (An, Sn−An).
(ii) Suppose f and g are distinct and |Supp(f−1g)| = k. We claim that

dΓ(f, g) ≤ k − 1.

By part (iii) of Lemma 2.3 we have dΓ(f, g) = dΓ(1, f
−1g).

Since |Supp(f−1g)| = k, f−1g can be written as a product of at most k − 1

transpositions . So dΓ(1, f
−1g) ≤ k − 1. Part (ii) follows.

(iii) This is proved by mathematical induction. Clearly Γ(S3, S) = K3,3 is
Hamiltonian. Suppose that k ≥ 3 and that Γk = Γ(Sk, S) is Hamiltonian,
so Γk has a cycle of length k! that contains all the vertices of Γk. We can
represent any permutation πi of [k] by a k-tuple πi = (πi

1, π
i
2, . . . , π

i
k) where πi

maps the point j to πi
j for each j. Now suppose π1, π2, …,πk! are consecutive

vertices of a Hamiltonian cycle in Γk. We construct a Hamiltonian cycle of
Γk+1 = Γ(Sk+1, S) as follows:

For every permutation πi of Γk, we construct a path path(πi) with k + 1

vertices in Γk+1 as follows:

path(πi) : (πi
1, π

i
2, . . . , π

i
k, k + 1), (πi

1, π
i
2, . . . , k + 1, πi

k),

(πi
1, π

i
2, . . . , k + 1, πi

k−1, π
i
k), . . . , (k + 1, πi

1, π
i
2, . . . , π

i
k).

The number of these paths is even ( k! paths) and any two of them have no
common vertex. Thus each vertex of Γk+1 occurs in exactly one of these paths.
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In addition the first vertices of path(πi) and path(πi+1), (πi
1, π

i
2, . . . , π

i
k, k + 1)

and (πi+1
1 , πi+1

2 , . . . , πi+1
k , k+1), are adjacent in Γk+1, and also the first vertices

of path(π1) and path(πk!) are adjacent.
Also the last vertices of path(πi) and path(πi+1), (k+ 1, πi

1, π
i
2, . . . , π

i
k) and

(k + 1, πi+1
1 , πi+1

2 , . . . , πi+1
k ),

are adjacent. Thus we can construct a Hamiltonian cycle of length (k + 1)! in
Γk+1 by chaining path(π1), path(π2), . . . , path(πk!−1), and path(πk!) consec-
utively as in Figure1. □

3. Main Results

Theorem 3.1. Let S be a sharply (n−2)-transitive subset of Sn. Then S = An

or Sn −An.

We have two proofs:
Suppose S is a sharply (n − 2)-transitive subset of Sn. So S is an L-

intersecting subset of Sn where L = { 0, 1, 2, . . . , n− 3} and has n!
2 elements.

First proof. In this proof we use parts (i) and (ii) of Lemma 2.4. Suppose
that Sn−An 6= S 6= An. Then S∩An 6= ∅ 6= S∩ (Sn−An) (since |S| = |An| =
|Sn −An|).

Let |S ∩ An| = m. Then 1 ≤ m ≤ n!
2 and |S ∩ (Sn − An)| = n!

2 − m. By
defining V1 = S∩An, V2 = An−S, V3 = S∩(Sn−An) and V4 = (Sn−An)−S,
we can say that S is partitioned into V1 and V3. Any permutations f and g

of S are not adjacent in the graph Γn of Lemma 2.4 because they disagree on
at least 3 points of [n] and hence dΓ(f, g) ≥ 2; so there is no edge between V1

and V3. On the other hand An = V1 ∪ V2 and Sn − An = V3 ∪ V4 are the two
parts of the bipartition of Γn. Hence vertices of V1 could be only connected
to vertices of V4 and also vertices of V3 could be only connected to vertices
of V2. Let Ei be the set of edges that are incident with some vertex v ∈ Vi
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where 1 ≤ i ≤ 4. Therefore E1 ⊆ E4 and E3 ⊆ E2. Since |V1| = |V4| = m and
|V2| = |V3| = n!

2 −m we have

|E1| =
∑
v∈V1

deg(v) = m

(
n

2

)
=

∑
v∈V4

deg(v) = |E4|

and
|E2| =

∑
v∈V2

deg(v) = (
n!

2
−m)

(
n

2

)
=

∑
v∈V3

deg(v) = |E3|.

So E1 = E4 and E2 = E3. Hence there are no edges between V2 and V4, and
vertices of V2 are only adjacent with vertices of V3. Now observe that there is
no edge between V1 ∪ V4 and V2 ∪ V3. But this contradicts part (ii) of Lemma
2.4. Hence we must have S = An or Sn −An.

Second proof. In this proof we use part (iii) of Lemma 2.4. Since Γn is
Hamiltonian, there is a cycle of length n! in Γn. Let f1, f2, . . . , fn! be consecu-
tive vertices of this Hamiltonian cycle. So dΓn(fi, fi+1) = 1 for any 1 ≤ i ≤ n!

(setting fn!+1 = f1). Now assume that fα1
, fα2

, …,fαm
are the elements of S

and α1 < α2 < · · · < αm where m = n!
2 .

Since any two permutations of S disagree on at least 3 points of [n] we have

dΓn(fαi , fαi+1) ≥ 2 (⋆)

for 1 ≤ i ≤ m where we set fαm+1 = fα1 .
On the other hand by considering the Hamiltonian cycle we have

dΓn
(fα1

, fα2
) + dΓn

(fα2
, fα3

) + · · ·+ dΓn
(fαm

, fα1
) ≤ n! (⋆⋆).

From (⋆) and (⋆⋆) we conclude that

dΓn(fα1 , fα2) = dΓn(fα2 , fα3) = · · · = dΓn(fαm , fα1) = 2 (⋆ ⋆ ⋆).

If fα1 ∈ An then since dΓn(fα1 , fα2) = 2 we conclude that fα2 ∈ An and
similarly we have fαi

∈ An(for 3 ≤ i ≤ m = n!
2 ) and so S = An (since

|S| = |An| = n!
2 ). If fα1 is an odd permutation then since dΓn(fα1 , fα2) = 2 we

conclude that fα2 is an odd permutation and hence fα2 ∈ Sn − An. Similarly
we have fαi

∈ Sn −An(for 3 ≤ i ≤ m = n!
2 ). Hence S = Sn −An. □

Let f and g be two permutations of [n], t ∈ N and t ≤ n. Then f and g are
said to be t-intersecting if |Fix(g−1f)| ≥ t. Also a family S of permutations
of [n] is t-intersecting if |Fix(g−1f)| ≥ t (Or equivalently |{x ∈ [n] : f(x) =

g(x)}| ≥ t) for any two permutations f and g of S. Cameron and Ku proposed
the following problem at the end of [4]:

Problem. Given t ≥ 1, is there a number n0(t) such that, if n ≥ n0(t),
then a t-intersecting subset of Sn has cardinality at most (n − t)!, and a set
meeting the bound is a coset of the stabilizer of t points?

The following theorems give some relations between intersecting subsets and
sharply t-transitive subsets of Sn. Particularly, Theorems 1.1 and 3.2(vi) show
that if there exists a sharply t-transitive subset of Sn, then any t-intersecting
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subset of Sn has at most (n − t)! elements. Part (v) of the following theorem
is proved by M. Deza and P. Frankl in the first lemma of [5].

Theorem 3.2. Let L ⊆ { 0, 1, 2, . . . , t− 1} , S be an L-intersecting subset and
S1 be a t-intersecting subset of Sn where 1 ≤ t ≤ n. Then, for each g ∈ Sn,

(i) { gf : f ∈ S} and { fg : f ∈ S} are L-intersecting,
(ii) { gf : f ∈ S1} and { fg : f ∈ S1} are t-intersecting,
(iii) {g1f : f ∈ S} ∩ {g2f : f ∈ S} = ∅ for distinct permutations g1 and g2

of S1,
(iv) {g1f : f ∈ S1} ∩ {g2f : f ∈ S1} = ∅ for distinct permutations g1 and

g2 of S,
(v) |S1||S| ≤ n!, and
(vi) If L = { 0, 1, 2, . . . , t− 1}, and |S| = n!

(n−t)! then |S1| ≤ (n− t)!.

Proof. The proofs of (i) and (ii) are immediate from the definitions. The proof
of (iv) is similar to that of (iii), and (vi) follows from (v). Thus we only need
to prove (iii) and (v).

(iii) Suppose g1 6= g2 in S1 and {g1f : f ∈ S} ∩ {g2f : f ∈ S} 6= ∅. Then
there exist f1 and f2 in S such that g1f1 = g2f2. From (i) we conclude that
g1f1 and g1f2 disagree on at least n+ 1− t points of [n]. Hence g2f2 and g1f2
also disagree on at least n + 1 − t points of [n], so g2f2 and g1f2 agree on at
most n− (n+1− t) = t− 1 points of [n]. But this contradicts part (ii). Hence
we must have {g1f : f ∈ S} ∩ {g2f : f ∈ S} = ∅.

(v) From (iv) it follows that

|
∪

g∈S1

{gf : f ∈ S}| =
∑
g∈S1

|{gf : f ∈ S}| =
∑
g∈S1

|S| = |S1||S|.

On the other hand
∪

g∈S1
{ gf : f ∈ S} ⊆ Sn. Hence |S1||S| ≤ n!. □

Finally we show that, wherever a sharply k-transitive subset of Sn exists,
we can partition it into many t-intersecting families where 0 ≤ t ≤ k and each
of them determines a sharply (k − t)-transitive subset of permutations.

Theorem 3.3. Let k, t ∈ Z, 0 ≤ t ≤ k ≤ n, S be a sharply k-transitive family
of permutations of [n] and A be an arbitrary t-subset of [n]. Then we can
partition S into N = n!

(n−t)! families C1, C2, . . . , CN each of size (n−t)!
(n−k)! such

that for each f ∈ Ci(1 ≤ i ≤ N), f−1Ci represents a sharply (k − t)-transitive
subset of permutations of [n]−A.

Proof. We define a relation R on S as follows:

g, f ∈ S : gRf ⇐⇒ ∀i ∈ A : f(i) = g(i).

Then R is an equivalence relation and partitions S into at most N = n!
(n−t)!

equivalence classes. Suppose C is one of these equivalence classes and f ∈ C.
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Then for each g ∈ C,

i ∈ A =⇒ g(i) = f(i) =⇒ f−1g(i) = i

and
i ∈ [n]−A =⇒ f−1g(i) ∈ [n]−A.

Thus each g ∈ C determines a permutation of X = [n]−A, namely the restric-
tion f−1g |X .

Now suppose that A = {x1, x2, x3, . . . , xt} and u = (u1, u2, u3, . . . , uk−t)

and v = (v1, v2, v3, . . . , vk−t) are two (k − t)-tuples of distinct elements of
[n]−A.

Because S is sharply k-transitive then by Theorem 3.2(i), f−1S = {f−1g|g ∈
S} is also sharply k-transitive and so for two k-tuples

u′ = (x1, x2, . . . , xt, u1, u2, u3, . . . , uk−t)

and
v′ = (x1, x2, . . . , xt, v1, v2, v3, . . . , vk−t),

there exists exactly one element of f−1S like h such that u′h = v′.Then uh = v

and xh
i = xi(1 ≤ i ≤ t). So h ∈ f−1C and C ′ = {h |X |h ∈ f−1C} is

(k− t)-transitive set of permutations of X. In addition we can easily conclude
sharpness of C ′ from the sharpness of f−1S.

Thus from Theorem 1.1 we have

|C| = |f−1C| = |C ′| ≤ (n− t)!

((n− t)− (k − t))!
=

(n− t)!

(n− k)!
.

There are at most N = n!
(n−t)! equivalence classes C, and so∑

C

|C| ≤ N.
(n− t)!

(n− k)!
=

n!

(n− k)!
(⋆).

However
∑

C |C| = |S| = n!
(n−k)! (⋆⋆).

From (⋆) and (⋆⋆) we conclude that there are exactly N non-empty classes,
each of size (n−t)!

(n−k)! . □

In Theorem 3.3, if t = k − 1, then |Ci| = (n−k+1)!
(n−k)! = n − k + 1, and any

equivalence class represents a Latin square of order n − k + 1. Also if t = 1,
then N = n!

(n−1)! = n and |C ′| = (n−1)!
(n−k)! (1 ≤ i ≤ N) and in this case, we can

construct n sharply (k − 1)-transitive subsets of permutations of [n− 1].

Acknowledgments

I would like to thank Professor Cheryl E. Praeger for reading primary man-
uscript and her useful remarks on the previous versions of this paper. Also I
am grateful to the referees for suggestions which improved the paper.



190 M. N. Iradmusa

References
1. A. Bonisoli, P. Quattrocchi, Each invertible sharply d-transitive finite permutation set

with d ≥ 4 is a group. J. Algebraic Combin., 12(3), (2000), 241–250.
2. P. J. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge University

Press, 1994.
3. P. J. Cameron, M. Deza, P. Frankl, Intersection Theorems in Permutation Groups, Com-

binatorica, 8(3), (1988), 249–260.
4. P. J. Cameron, C. Y. Ku, Intersecting Families of Permutations, European J. Combina-

torics, 24(7), (2003), 881–890.
5. M. Deza, P. Frankl, On the maximum number of permutations with given maximal or

minimal distance, J. Combinatorial Theory (A), 22(3), (1977), 352–360.


