Sharply ($n-2$)-transitive Sets of Permutations

Moharram N. Iradmusa

Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

```
E-mail: m_iradmusa@sbu.ac.ir
```


Abstract

Let S_{n} be the symmetric group on the set $[n]=\{1,2, \ldots, n\}$. For $g \in S_{n}$ let $f i x(g)$ denote the number of fixed points of g. A subset S of S_{n} is called t-transitive if for any two t-tuples $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ of distinct elements of $[n]$, there exists $g \in S$ such that $x_{i}^{g}=y_{i}$ for any $1 \leq i \leq t$ and additionally S is called sharply t-transitive if for any given pair of t-tuples, exactly one element of S carries the first to the second. In addition, a subset S of S_{n} is called t-intersecting if fix $\left(h^{-1} g\right) \geq t$ for any two distinct permutations h and g of S. In this paper, we prove that there are only two sharply $(n-2)$-transitive subsets of S_{n} and finally we establish some relations between sharply k-transitive subsets and t-intersecting subsets of S_{n} where $k, t \in \mathbb{Z}$ and $0 \leq t \leq k \leq n$.

Keywords: Symmetric group, Sharply transitive set of permutations, Cayley graph.

2010 Mathematics Subject Classification: 20B20, $20 B 30$.

1. Introduction

Let S_{n} be the symmetric group on the set $[n]=\{1,2, \ldots, n\}$. For each $g \in S_{n}$, a point x is called a fixed point of g if $g(x)=x$ and $f i x(g)$ denotes the number of fixed points of g. In addition for each non-empty subset L of $\{0,1,2, \ldots, n-2\}$, a subset S of S_{n} is called L-intersecting if, for any two distinct permutations h and g of S we have $f i x\left(h^{-1} g\right) \in L$ and any L intersecting subset S of S_{n} is called t-intersecting where $L=\{t, t+1, t+$ $2, \ldots, n-2\}$.

Furthermore each subset S of S_{n} is called t-transitive if for any two t-tuples $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ of distinct elements of $[n]$, there exists $g \in S$ such that

$$
1 \leq i \leq t: x_{i}^{g}=y_{i}
$$

Additionally S is called sharply t-transitive if for any given pair of t-tuples, exactly one element of S carries the first to the second. It is not difficult to prove that for each t-transitive subset S and each sharply t-transitive subset S_{1} of S_{n} we have

$$
|S| \geq \frac{n!}{(n-t)!}=\left|S_{1}\right|
$$

The following theorem is proved by P. J. Cameron, M. Deza and P. Frankl in [3]:

Theorem 1.1. Let $L=\{0,1,2, \ldots, t-1\}$ and S be an L-intersecting subset of S_{n}. Then

$$
|S| \leq \frac{n!}{(n-t)!}
$$

and the equality holds if and only if S is a sharply t-transitive subset of S_{n}.
In [1], the authors studied invertible sharply t-transitive subsets of S_{n}. A subset of S_{n} is said to be invertible if it contains the identity and if whenever it contains a permutation it also contains its inverse. The following theorem is one of the main results of [1]:

Theorem 1.2. Let G be an invertible sharply d-transitive permutation set on a finite set X. If $d \geq 6$ then G is either S_{d}, S_{d+1} or A_{d+2}. If $d=5$ then G is either S_{5}, S_{6}, A_{7} or the Mathieu group of degree 12. If $d=4$ then G is either S_{4}, S_{5}, A_{6} or the Mathieu group of degree 11.

Our main result in this paper is about the structure of a sharply $(n-2)$ transitive subset of S_{n}. Let S be a sharply $(n-2)$-transitive subset of S_{n}. By Theorem 1.1, S is an L-intersecting subset of S_{n}, where $L=\{0,1,2, \ldots, n-3\}$, and S has $\frac{n!}{2}$ elements. In Theorem 3.1 we will prove that there exist only two sharply $(n-2)$-transitive subsets of S_{n}.

2. Preliminary Notes

To prove the main results in the next section we need some definitions and lemmas about Cayley graphs.

Definition 2.1. For each $g \in S_{n}$, the set $\operatorname{Fix}(g)=\{x \in[n]: g(x)=x\}$ is the fixed point set of g and the set $\operatorname{Supp}(g)=\{x \in[n]: g(x) \neq x\}=[n]-F i x(g)$ is called the support set of g.

Let f and g be two permutations of $[n], k \in \mathbb{N}$ and $k \leq n$. Then by Definition 2.1 we have $\{x \in[n]: f(x)=g(x)\}=F i x\left(g^{-1} f\right)$ and $\{x \in[n]: f(x) \neq g(x)\}=$ $\operatorname{Supp}\left(g^{-1} f\right)$.
Definition 2.2. Let S be a subset of a group G such that $1 \notin S$ and $S=S^{-1}$. The Cayley graph $\Gamma(G, S)$ associated with G and S is defined to have vertex set G and a vertex f is joined to a vertex g if $g^{-1} f \in S$ or equivalently $f^{-1} g \in S$ (Since $S=S^{-1}$ it follows that $g^{-1} f \in S \Longleftrightarrow\left(g^{-1} f\right)^{-1}=f^{-1} g \in S$).

The following properties of Cayley graphs are well known and proofs can be found, for example, in page 241 of [2].

Lemma 2.3. (i) $\Gamma=\Gamma(G, S)$ is connected if and only if S generates G.
(ii) For each $g \in G$, the map $\rho_{g}: x \mapsto g^{-1} x$ is an automorphism of Γ and $\left\{\rho_{g}: g \in G\right\} \cong G$.
(iii) $d_{\Gamma}(f, g)=d_{\Gamma}(h f, h g)$ where $h \in G$, and f and g are two vertices of Γ.

Lemma 2.4. Let n be a positive integer and S be the set of all transpositions of $[n]$. Then
(i) $\Gamma=\Gamma\left(S_{n}, S\right)$ is a bipartite graph.
(ii) $\operatorname{diam}(\Gamma)=n-1$ and so Γ is connected and $d_{\Gamma}(f, g) \leq n-1$ for any two vertices f and g of Γ.
(iii) Γ is Hamiltonian when $n \geq 3$.

Proof. (i) It is easy to check that Γ is bipartite with bipartition $\left(A_{n}, S_{n}-A_{n}\right)$.
(ii) Suppose f and g are distinct and $\left|\operatorname{Supp}\left(f^{-1} g\right)\right|=k$. We claim that

$$
d_{\Gamma}(f, g) \leq k-1
$$

By part (iii) of Lemma 2.3 we have $d_{\Gamma}(f, g)=d_{\Gamma}\left(1, f^{-1} g\right)$.
Since $\left|\operatorname{Supp}\left(f^{-1} g\right)\right|=k, f^{-1} g$ can be written as a product of at most $k-1$ transpositions. So $d_{\Gamma}\left(1, f^{-1} g\right) \leq k-1$. Part (ii) follows.
(iii) This is proved by mathematical induction. Clearly $\Gamma\left(S_{3}, S\right)=K_{3,3}$ is Hamiltonian. Suppose that $k \geq 3$ and that $\Gamma_{k}=\Gamma\left(S_{k}, S\right)$ is Hamiltonian, so Γ_{k} has a cycle of length k ! that contains all the vertices of Γ_{k}. We can represent any permutation π^{i} of $[k]$ by a k-tuple $\pi^{i}=\left(\pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{k}^{i}\right)$ where π^{i} maps the point j to π_{j}^{i} for each j. Now suppose $\pi^{1}, \pi^{2}, \ldots, \pi^{k!}$ are consecutive vertices of a Hamiltonian cycle in Γ_{k}. We construct a Hamiltonian cycle of $\Gamma_{k+1}=\Gamma\left(S_{k+1}, S\right)$ as follows:

For every permutation π^{i} of Γ_{k}, we construct a path path $\left(\pi^{i}\right)$ with $k+1$ vertices in Γ_{k+1} as follows:

$$
\begin{gathered}
\operatorname{path}\left(\pi^{i}\right):\left(\pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{k}^{i}, k+1\right),\left(\pi_{1}^{i}, \pi_{2}^{i}, \ldots, k+1, \pi_{k}^{i}\right) \\
\left(\pi_{1}^{i}, \pi_{2}^{i}, \ldots, k+1, \pi_{k-1}^{i}, \pi_{k}^{i}\right), \ldots,\left(k+1, \pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{k}^{i}\right)
\end{gathered}
$$

The number of these paths is even (k ! paths) and any two of them have no common vertex. Thus each vertex of Γ_{k+1} occurs in exactly one of these paths.

In addition the first vertices of $\operatorname{path}\left(\pi^{i}\right)$ and $\operatorname{path}\left(\pi^{i+1}\right),\left(\pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{k}^{i}, k+1\right)$ and $\left(\pi_{1}^{i+1}, \pi_{2}^{i+1}, \ldots, \pi_{k}^{i+1}, k+1\right)$, are adjacent in Γ_{k+1}, and also the first vertices of path $\left(\pi^{1}\right)$ and path $\left(\pi^{k!}\right)$ are adjacent.

Also the last vertices of $\operatorname{path}\left(\pi^{i}\right)$ and $\operatorname{path}\left(\pi^{i+1}\right),\left(k+1, \pi_{1}^{i}, \pi_{2}^{i}, \ldots, \pi_{k}^{i}\right)$ and

$$
\left(k+1, \pi_{1}^{i+1}, \pi_{2}^{i+1}, \ldots, \pi_{k}^{i+1}\right)
$$

are adjacent. Thus we can construct a Hamiltonian cycle of length $(k+1)$! in Γ_{k+1} by chaining path $\left(\pi^{1}\right)$, path $\left(\pi^{2}\right), \ldots, \operatorname{path}\left(\pi^{k!-1}\right)$, and $\operatorname{path}\left(\pi^{k!}\right)$ consecutively as in Figure1.

Figure 1

3. Main Results

Theorem 3.1. Let S be a sharply ($n-2$)-transitive subset of S_{n}. Then $S=A_{n}$ or $S_{n}-A_{n}$.

We have two proofs:
Suppose S is a sharply $(n-2)$-transitive subset of S_{n}. So S is an L intersecting subset of S_{n} where $L=\{0,1,2, \ldots, n-3\}$ and has $\frac{n!}{2}$ elements.

First proof. In this proof we use parts (i) and (ii) of Lemma 2.4. Suppose that $S_{n}-A_{n} \neq S \neq A_{n}$. Then $S \cap A_{n} \neq \varnothing \neq S \cap\left(S_{n}-A_{n}\right)$ (since $|S|=\left|A_{n}\right|=$ $\left.\left|S_{n}-A_{n}\right|\right)$.

Let $\left|S \cap A_{n}\right|=m$. Then $1 \leq m \leq \frac{n!}{2}$ and $\left|S \cap\left(S_{n}-A_{n}\right)\right|=\frac{n!}{2}-m$. By defining $V_{1}=S \cap A_{n}, V_{2}=A_{n}-S, V_{3}=S \cap\left(S_{n}-A_{n}\right)$ and $V_{4}=\left(S_{n}-A_{n}\right)-S$, we can say that S is partitioned into V_{1} and V_{3}. Any permutations f and g of S are not adjacent in the graph Γ_{n} of Lemma 2.4 because they disagree on at least 3 points of $[n]$ and hence $d_{\Gamma}(f, g) \geq 2$; so there is no edge between V_{1} and V_{3}. On the other hand $A_{n}=V_{1} \cup V_{2}$ and $S_{n}-A_{n}=V_{3} \cup V_{4}$ are the two parts of the bipartition of Γ_{n}. Hence vertices of V_{1} could be only connected to vertices of V_{4} and also vertices of V_{3} could be only connected to vertices of V_{2}. Let E_{i} be the set of edges that are incident with some vertex $v \in V_{i}$
where $1 \leq i \leq 4$. Therefore $E_{1} \subseteq E_{4}$ and $E_{3} \subseteq E_{2}$. Since $\left|V_{1}\right|=\left|V_{4}\right|=m$ and $\left|V_{2}\right|=\left|V_{3}\right|=\frac{n!}{2}-m$ we have

$$
\left|E_{1}\right|=\sum_{v \in V_{1}} \operatorname{deg}(v)=m\binom{n}{2}=\sum_{v \in V_{4}} d e g(v)=\left|E_{4}\right|
$$

and

$$
\left|E_{2}\right|=\sum_{v \in V_{2}} \operatorname{deg}(v)=\left(\frac{n!}{2}-m\right)\binom{n}{2}=\sum_{v \in V_{3}} \operatorname{deg}(v)=\left|E_{3}\right| .
$$

So $E_{1}=E_{4}$ and $E_{2}=E_{3}$. Hence there are no edges between V_{2} and V_{4}, and vertices of V_{2} are only adjacent with vertices of V_{3}. Now observe that there is no edge between $V_{1} \cup V_{4}$ and $V_{2} \cup V_{3}$. But this contradicts part (ii) of Lemma 2.4. Hence we must have $S=A_{n}$ or $S_{n}-A_{n}$.

Second proof. In this proof we use part (iii) of Lemma 2.4. Since Γ_{n} is Hamiltonian, there is a cycle of length n ! in Γ_{n}. Let $f_{1}, f_{2}, \ldots, f_{n}$ be consecutive vertices of this Hamiltonian cycle. So $d_{\Gamma_{n}}\left(f_{i}, f_{i+1}\right)=1$ for any $1 \leq i \leq n$! (setting $f_{n!+1}=f_{1}$). Now assume that $f_{\alpha_{1}}, f_{\alpha_{2}}, \ldots, f_{\alpha_{m}}$ are the elements of S and $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}$ where $m=\frac{n!}{2}$.

Since any two permutations of S disagree on at least 3 points of $[n]$ we have

$$
d_{\Gamma_{n}}\left(f_{\alpha_{i}}, f_{\alpha_{i+1}}\right) \geq 2(\star)
$$

for $1 \leq i \leq m$ where we set $f_{\alpha_{m+1}}=f_{\alpha_{1}}$.
On the other hand by considering the Hamiltonian cycle we have

$$
d_{\Gamma_{n}}\left(f_{\alpha_{1}}, f_{\alpha_{2}}\right)+d_{\Gamma_{n}}\left(f_{\alpha_{2}}, f_{\alpha_{3}}\right)+\cdots+d_{\Gamma_{n}}\left(f_{\alpha_{m}}, f_{\alpha_{1}}\right) \leq n!(\star \star)
$$

From (\star) and ($\star \star$) we conclude that

$$
d_{\Gamma_{n}}\left(f_{\alpha_{1}}, f_{\alpha_{2}}\right)=d_{\Gamma_{n}}\left(f_{\alpha_{2}}, f_{\alpha_{3}}\right)=\cdots=d_{\Gamma_{n}}\left(f_{\alpha_{m}}, f_{\alpha_{1}}\right)=2(\star \star \star) .
$$

If $f_{\alpha_{1}} \in A_{n}$ then since $d_{\Gamma_{n}}\left(f_{\alpha_{1}}, f_{\alpha_{2}}\right)=2$ we conclude that $f_{\alpha 2} \in A_{n}$ and similarly we have $f_{\alpha_{i}} \in A_{n}$ (for $3 \leq i \leq m=\frac{n!}{2}$) and so $S=A_{n}$ (since $\left.|S|=\left|A_{n}\right|=\frac{n!}{2}\right)$. If $f_{\alpha_{1}}$ is an odd permutation then since $d_{\Gamma_{n}}\left(f_{\alpha_{1}}, f_{\alpha_{2}}\right)=2$ we conclude that $f_{\alpha_{2}}$ is an odd permutation and hence $f_{\alpha_{2}} \in S_{n}-A_{n}$. Similarly we have $f_{\alpha_{i}} \in S_{n}-A_{n}\left(\right.$ for $\left.3 \leq i \leq m=\frac{n!}{2}\right)$. Hence $S=S_{n}-A_{n}$.

Let f and g be two permutations of $[n], t \in \mathbb{N}$ and $t \leq n$. Then f and g are said to be t-intersecting if \mid Fix $\left(g^{-1} f\right) \mid \geq t$. Also a family S of permutations of $[n]$ is t-intersecting if $\left|F i x\left(g^{-1} f\right)\right| \geq t$ (Or equivalently $\mid\{x \in[n]: f(x)=$ $g(x)\} \mid \geq t$) for any two permutations f and g of S. Cameron and Ku proposed the following problem at the end of [4]:

Problem. Given $t \geq 1$, is there a number $n_{0}(t)$ such that, if $n \geq n_{0}(t)$, then a t-intersecting subset of S_{n} has cardinality at most $(n-t)$!, and a set meeting the bound is a coset of the stabilizer of t points?

The following theorems give some relations between intersecting subsets and sharply t-transitive subsets of S_{n}. Particularly, Theorems 1.1 and $3.2(v i)$ show that if there exists a sharply t-transitive subset of S_{n}, then any t-intersecting
subset of S_{n} has at most $(n-t)$! elements. Part (v) of the following theorem is proved by M. Deza and P. Frankl in the first lemma of [5].

Theorem 3.2. Let $L \subseteq\{0,1,2, \ldots, t-1\}, S$ be an L-intersecting subset and S_{1} be a t-intersecting subset of S_{n} where $1 \leq t \leq n$. Then, for each $g \in S_{n}$,
(i) $\{g f: f \in S\}$ and $\{f g: f \in S\}$ are L-intersecting,
(ii) $\left\{g f: f \in S_{1}\right\}$ and $\left\{f g: f \in S_{1}\right\}$ are t-intersecting,
(iii) $\left\{g_{1} f: f \in S\right\} \cap\left\{g_{2} f: f \in S\right\}=\varnothing$ for distinct permutations g_{1} and g_{2} of S_{1},
(iv) $\left\{g_{1} f: f \in S_{1}\right\} \cap\left\{g_{2} f: f \in S_{1}\right\}=\varnothing$ for distinct permutations g_{1} and g_{2} of S,
(v) $\left|S_{1} \| S\right| \leq n$!, and
(vi) If $L=\{0,1,2, \ldots, t-1\}$, and $|S|=\frac{n!}{(n-t)!}$ then $\left|S_{1}\right| \leq(n-t)$!.

Proof. The proofs of (i) and (ii) are immediate from the definitions. The proof of $(i v)$ is similar to that of $(i i i)$, and $(v i)$ follows from (v). Thus we only need to prove $(i i i)$ and (v).
(iii) Suppose $g_{1} \neq g_{2}$ in S_{1} and $\left\{g_{1} f: f \in S\right\} \cap\left\{g_{2} f: f \in S\right\} \neq \varnothing$. Then there exist f_{1} and f_{2} in S such that $g_{1} f_{1}=g_{2} f_{2}$. From (i) we conclude that $g_{1} f_{1}$ and $g_{1} f_{2}$ disagree on at least $n+1-t$ points of $[n]$. Hence $g_{2} f_{2}$ and $g_{1} f_{2}$ also disagree on at least $n+1-t$ points of $[n]$, so $g_{2} f_{2}$ and $g_{1} f_{2}$ agree on at most $n-(n+1-t)=t-1$ points of $[n]$. But this contradicts part (ii). Hence we must have $\left\{g_{1} f: f \in S\right\} \cap\left\{g_{2} f: f \in S\right\}=\varnothing$.
(v) From (iv) it follows that

$$
\left|\bigcup_{g \in S_{1}}\{g f: f \in S\}\right|=\sum_{g \in S_{1}}|\{g f: f \in S\}|=\sum_{g \in S_{1}}|S|=\left|S_{1}\right||S|
$$

On the other hand $\bigcup_{g \in S_{1}}\{g f: f \in S\} \subseteq S_{n}$. Hence $\left|S_{1}\right||S| \leq n!$.
Finally we show that, wherever a sharply k-transitive subset of S_{n} exists, we can partition it into many t-intersecting families where $0 \leq t \leq k$ and each of them determines a sharply $(k-t)$-transitive subset of permutations.

Theorem 3.3. Let $k, t \in Z, 0 \leq t \leq k \leq n$, S be a sharply k-transitive family of permutations of $[n]$ and A be an arbitrary t-subset of $[n]$. Then we can partition S into $N=\frac{n!}{(n-t)!}$ families $C_{1}, C_{2}, \ldots, C_{N}$ each of size $\frac{(n-t)!}{(n-k)!}$ such that for each $f \in C_{i}(1 \leq i \leq N), f^{-1} C_{i}$ represents a sharply $(k-t)$-transitive subset of permutations of $[n]-A$.

Proof. We define a relation R on S as follows:

$$
g, f \in S: g R f \Longleftrightarrow \forall i \in A: f(i)=g(i)
$$

Then R is an equivalence relation and partitions S into at most $N=\frac{n!}{(n-t)!}$ equivalence classes. Suppose C is one of these equivalence classes and $f \in C$.

Then for each $g \in C$,

$$
i \in A \Longrightarrow g(i)=f(i) \Longrightarrow f^{-1} g(i)=i
$$

and

$$
i \in[n]-A \Longrightarrow f^{-1} g(i) \in[n]-A
$$

Thus each $g \in C$ determines a permutation of $X=[n]-A$, namely the restriction $\left.f^{-1} g\right|_{X}$.

Now suppose that $A=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{t}\right\}$ and $u=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{k-t}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k-t}\right)$ are two $(k-t)$-tuples of distinct elements of $[n]-A$.

Because S is sharply k-transitive then by Theorem 3.2(i), $f^{-1} S=\left\{f^{-1} g \mid g \in\right.$ $S\}$ is also sharply k-transitive and so for two k-tuples

$$
u^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{t}, u_{1}, u_{2}, u_{3}, \ldots, u_{k-t}\right)
$$

and

$$
v^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{t}, v_{1}, v_{2}, v_{3}, \ldots, v_{k-t}\right)
$$

there exists exactly one element of $f^{-1} S$ like h such that $u^{\prime h}=v^{\prime}$.Then $u^{h}=v$ and $x_{i}^{h}=x_{i}(1 \leq i \leq t)$. So $h \in f^{-1} C$ and $C^{\prime}=\left\{\left.h\right|_{X} \mid h \in f^{-1} C\right\}$ is ($k-t$)-transitive set of permutations of X. In addition we can easily conclude sharpness of C^{\prime} from the sharpness of $f^{-1} S$.

Thus from Theorem 1.1 we have

$$
|C|=\left|f^{-1} C\right|=\left|C^{\prime}\right| \leq \frac{(n-t)!}{((n-t)-(k-t))!}=\frac{(n-t)!}{(n-k)!}
$$

There are at most $N=\frac{n!}{(n-t)!}$ equivalence classes C, and so

$$
\sum_{C}|C| \leq N \cdot \frac{(n-t)!}{(n-k)!}=\frac{n!}{(n-k)!}(\star)
$$

However $\sum_{C}|C|=|S|=\frac{n!}{(n-k)!}(\star \star)$.
From (\star) and $(\star \star)$ we conclude that there are exactly N non-empty classes, each of size $\frac{(n-t)!}{(n-k)!}$.

In Theorem 3.3, if $t=k-1$, then $\left|C_{i}\right|=\frac{(n-k+1)!}{(n-k)!}=n-k+1$, and any equivalence class represents a Latin square of order $n-k+1$. Also if $t=1$, then $N=\frac{n!}{(n-1)!}=n$ and $\left|C^{\prime}\right|=\frac{(n-1)!}{(n-k)!}(1 \leq i \leq N)$ and in this case, we can construct n sharply ($k-1$)-transitive subsets of permutations of $[n-1]$.

Acknowledgments

I would like to thank Professor Cheryl E. Praeger for reading primary manuscript and her useful remarks on the previous versions of this paper. Also I am grateful to the referees for suggestions which improved the paper.

References

1. A. Bonisoli, P. Quattrocchi, Each invertible sharply d-transitive finite permutation set with $d \geq 4$ is a group. J. Algebraic Combin., 12(3), (2000), 241-250.
2. P. J. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge University Press, 1994.
3. P. J. Cameron, M. Deza, P. Frankl, Intersection Theorems in Permutation Groups, Combinatorica, 8(3), (1988), 249-260.
4. P. J. Cameron, C. Y. Ku, Intersecting Families of Permutations, European J. Combinatorics, 24(7), (2003), 881-890.
5. M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combinatorial Theory (A), 22(3), (1977), 352-360.
