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Abstract. In this paper, a new homological dimension of modules, co-

presented dimension, is defined. We study some basic properties of this

homological dimension. Some ring extensions are considered, too. For

instance, we prove that if S ≥ R is a finite normalizing extension and

SR is a projective module, then for each right S-module MS , the cop-

resented dimension of MS does not exceed the copresented dimension of

HomR(S,M).
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

are unitary. First we recall some known notions and facts needed in the sequel.

Let R be a ring, n a non-negative integer and M an R-module. Then

(1) M is said to be finitely cogenerated [1] if for every family {Vk}J of

submodules of M with
⋂

JVk = 0, there is a finite subset I ⊂ J with
⋂

IVk = 0.

(2) M is said to be n-copresented [14] if there is an exact sequence of R-

modules 0 →M → E0 → E1 → · · · → En , where each Ei is a finitely

cogenerated injective module.
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154 M. Amini, F. Hasani

(3) R is called right co-coherent [17] if every finitely cogenerated factor

module of a finitely cogenerated injective R-module is finitely copre-

sented.

(4) R is called n-cocoherent [14] in case every n-copresented R-module is

(n + 1)-copresented. It is easy to see that R is cocoherent if and only

if it is 1-cocoherent. Recall that a ring R is called right conoethrian

[4] if every factor module of a finitely cogenerated R-module is finitely

cogenerated. By [4, Proposition 17], a ring R is co-noethrian if and

only if it is 0-cocoherent.

(5) M is said to be n-presented [5] if there is an exact sequence of R-

modules Fn → Fn−1 → · · · → F1 → F0 → M → 0 , where each Fi is a

finitely generated free module.

(6) R is called coherent [18] in case every 0-presented R-module is 1-

presented.

(7) A ring extension R ⊆ R′ with characteristic p > 0 is called a purely

inseparable extension [10] if for every element r
′

∈ R
′

, there exists a

non-negative integer n such that r
′p

n

∈ R.

(8) For any commutative ring R of prime characteristic p > 0, assume that

FR : R → R(e) is the e-th iterated Frobenius map in which R(e) ∼= R.

Then, the perfect closure [9] of R, denoted by R∞, is defined as the

limit of the following direct system:

R
FR−−−−→ R

FR−−−−→ R
FR−−−−→ · · ·

(9) M is called (n, d)-injective [18] if Extd+1
R (N,M) = 0 for any n-presented

right R-module N . It is clear that M is (0, 0)-injective if and only if

M is injective.

(10) Assume that S ≥ R is a unitary ring extension. Then, the ring S is

called right R-projective [6] in case, for any right S-module MS with

an S-module NS , NR |MR implies NS |MS , where N |M means that

N is a direct summand of M .

(11) The ring extension S ≥ R is called a finite normalizing extension [8] in

case there is a finite subset {s1, · · · , sn} ⊆ S such that S =
∑i=n

i=1 siR

and siR = Rsi for i = 1, · · · , n.

(12) A finite normalizing extension S ≥ R is called an almost excellent

extension [12] in case RS is flat, SR is projective, and the ring S is

right R-projective.

In this paper, we introduce the dual concepts of presented dimensions of

R-modules. We also, introduce the copresented dimension of any R-module

M :

FEd(M) = inf{m | there exists an injective resolution 0 → M → E0 →

· · · → Em → · · · → Em+i → · · · , such that Em+i are finitely cogenerated for

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
24

-0
4-

10
 ]

 

                             2 / 13

http://ijmsi.com/article-1-1036-fa.html


Copresented dimension of modules 155

i = 0, 1, 2, · · · }. If K = ker(Em → Em+1), then K has an infinite finite cop-

resentation. It is clear that any copresented dimension is finitely copresented

dimension (see [16]). Also, the copresented dimension of ring R is defined to

be:

FED(R) = sup{FEd(M) |M is a finitely cogenerated module}.

Then, some basic properties of the copresented dimensions of modules are stud-

ied. For example, it is shown that if FEd(M) <∞, then id(M) ≤ n if and only

if Extn+1
R (N,M) = 0 for every strongly copresented R-module N . Also, it is

proved that FED(R⊕S) = sup{FED(R),FED(S)}, for any two rings R and S.

Also, some characterizations of the copresented dimensions of modules on Ring

Extensions are determined. For instance, let S ≥ R be a finite normalizing ex-

tension with SR projective as an R-module, then for any right R-module MR,

we have FEd(HomR(S,M))S ≤ FEd(MR). Finally, we give a sufficient condi-

tion under which FED(S) ≤ FED(R) and or FED(R) < FED(S) + max{k, d},

where k = id(SR) and d = sup{FEd(MR) |M ∈ Mod− S and FEd(MS) = 0}.

2. Main Results

We start this section with the following definition which is the dual of the

presented dimension of a module.

Definition 2.1. For any R-module M , we define the copresented dimension

of M to be FEd(M) = inf{m | there exists an injective resolution 0 → M →

E0 → · · · → Em → · · · → Em+i → · · · , so that Em+i are finitely cogenerated for

i = 0, 1, 2, · · · }. In particular, a module M is called strongly copresented mod-

ule if FEd(M) = 0.

Proposition 2.2. For any R-module M , FEd(M) ≤ id(M) + 1.

Proof. It is a direct consequence of Definition 2.1. �

Example 2.3. Let R = Z. Since id(Zp∞) = 0, we have FEd(Zp∞) ≤ 1. On

the other hand, Zp∞ is finitely cogenerated by [1, p.124]. So by Definition 2.1,

FEd(Zp∞) = 0.

Now, we study the behavior of the copresented dimension on the exact se-

quences. Before this we need the following lemma.

Lemma 2.4. Let 0 → A
f

′

→ B
f
→ C → 0 be a short exact sequence of R-

modules. Then:

(1) If 0 → A → A0 → A1 → · · · and 0 → C → C0 → C1 → · · · are

injective resolutions of A and C, respectively. Then the exact sequence

0 −→ B −→ A0 ⊕ C0 −→ A1 ⊕ C1 −→ · · ·

is an injective resolution of B.
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(2) If 0 → B → B0 → B1 → · · · and 0 → C → C0 → C1 → · · · are

injective resolutions of B and C, respectively. Then the exact sequence

0 −→ A −→ B0 −→ D0 −→ D1 −→ · · ·

is an injective resolution of A, where Di = Ci ⊕Bi+1 for any i ≥ 0.

(3) If 0 → B → B0 → B1 → · · · and 0 → A → A0 → A1 → · · · are

injective resolutions of B and A, respectively. Then the exact sequence

0 −→ C −→ F 0 −→ E0 −→ E1 −→ · · ·

is an injective resolution of C, where F 0 = B0 ⊕ A1 and Ei = A0 ⊕

Bi+1 ⊕Ai+2 for any i ≥ 0.

Proof. (1) The proof is similar to that of [3, Theorem 2.4].

(2) Let 0 → B → B0 → B1 → · · · be an injective resolution of B. Then,

the exact sequences

0 → K → B1 → B2 → · · · and 0 → B → B0 → K → 0 exist, where

K = B0

B
. Now, we consider the following commutative diagram:

0 0

↓ ↓

0 −→ A −→ B −→ C −→ 0

‖ ↓ ↓

0 −→ A −→ B0 −→ D −→ 0

↓ ↓

K == K

↓ ↓

0 0

By (1), there is an exact sequence

0 −→ D −→ D0 −→ D1 −→ D2 −→ · · ·

of injective R-modules Di such that Di = Ci ⊕Bi+1 for any i ≥ 0.

Combining this sequence with the exact sequence 0 → A → B0 → D → 0,

we get the exact sequence

0 −→ A −→ B0 −→ D0 −→ D1 −→ · · · ,

where B0 and Di are injective for any i ≥ 0.

(3) Let 0 → A→ A0 → A1 → · · · be an injective resolution of A. Then, the

exact sequences

0 → K → A1 → A2 → · · · and 0 → A → A0 → K → 0 exist, where

K = A0

A
. Now, we consider the following commutative diagram:
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Copresented dimension of modules 157

0 0

↓ ↓

0 −→ A −→ B −→ C −→ 0

↓ ↓ ‖

0 −→ A0 −→ F −→ C −→ 0

↓ ↓

K == K

↓ ↓

0 0

By (1), there is an exact sequence

0 −→ F −→ F 0 −→ F 1 −→ F 2 −→ · · ·

of injective R-modules F i such that F i = Bi ⊕Ai+1 for any i ≥ 0.

It is clear that F = A0 ⊕ C. So, the exact sequence 0 → C → F → A0 → 0

exists. Let K = F 0

F
, then we obtain the following commutative diagram:

0 0

↓ ↓

0 −→ C −→ F −→ A0 −→ 0

‖ ↓ ↓

0 −→ C −→ F 0 −→ E −→ 0

↓ ↓

K == K

↓ ↓

0 0

Therefore by (1), the sequence

0 −→ E −→ E0 −→ E1 −→ E2 −→ · · ·

is an injective resolution of E, where Ei = A0 ⊕ F i+1 = A0 ⊕Bi+1 ⊕Ai+2 for

any i ≥ 0. Combining this sequence with the exact sequence 0 → C → F 0 →

E → 0, we get the exact sequence

0 −→ C −→ F 0 −→ E0 −→ E1 −→ · · · ,

where F 0 and Ei are injective for any i ≥ 0. �

Theorem 2.5. Let 0 → A
g
→ B

f
→ C → 0 be an exact sequence of R-modules.

Then FEd(B) ≤ max{FEd(A),FEd(C)},FEd(C) ≤ max{FEd(B),FEd(A) +

1},FEd(A) ≤ max{FEd(B),FEd(C)− 1}.

Proof. Assume that E
′

is an injective resolution of A and E
′′

is an injective

resolution of C. Thus by Lemma 2.5(1), there exists an injective resolution E

of B such that

0 → E
′
A → EB = E

′
A ⊕E

′′
C → E

′′
C → 0
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is an exact sequence of complexes. Hence for everym ≥ max{FEd(A),FEd(C)},

Em is finitely cogenerated. So, we deduce that FEd(B) ≤ max{FEd(A),FEd(C)}.

Assume that E
′′

is an injective resolution of C and E is an injective resolution

of B. Thus by Lemma 2.5(2), the exact sequence

0 −→ A −→ E0 −→ D0 −→ D1 −→ · · · −→ Dd −→ · · ·

is an injective resolution of A. So for every d ≥ max{FEd(B),FEd(C)−1}, Dd

is finitely cogenerated. Thus, we have that FEd(A) ≤ max{FEd(B),FEd(C)−

1}. Also, it is prove that FEd(C) ≤ max{FEd(B),FEd(A) + 1}. �

The proof of the following Corollary is similar to the proof of [19, Corollary

2.7].

Corollary 2.6. If FEd(M1),FEd(M2), · · ·FEd(Md) are finite, then:

FEd(⊕Mi) = max{FEd(Mi) | i = 1, · · · , d}.

Proof. For the case m = 2, the exact sequences

0 →M1 →M1 ⊕M2 →M2 → 0

and

0 →M2 →M2 ⊕M1 →M1 → 0

exist. Thus by Theorem 2.5, we deduce that

FEd(M2) ≤ max{FEd(M1 ⊕M2),FEd(M1)− 1},

FEd(M1) ≤ max{FEd(M1 ⊕M2),FEd(M2)− 1}

and

FEd(M1 ⊕M2) ≤ max{FEd(M1), FEd(M2)}.

Assume that FEd(M1) < FEd(M2). Then FEd(M1) ≤ FEd(M2) − 1, and we

have:

FEd(M2) ≤ max{FEd(M1 ⊕M2),FEd(M2)− 2} = FEd(M1 ⊕M2).

Also, similarly FEd(M1) ≤ FEd(M1 ⊕M2). So, we conclude that FEd(M1 ⊕

M2) = max{FEd(M1),FEd(M2)}. �

Proposition 2.7. Let n be a non-negative integer. Then the following state-

ments are equivalent:

(1) id(M) ≤ n for every strongly copresented R-module M ;

(2) Extn+1
R (N,M) = 0 for every strongly copresented R-module N .

Proof. (1) ⇒ (2) This is obvious.

(2) ⇒ (1) We use the induction on n. Let n = 0. Since Ext1R(N,M) = 0 for

any strongly copresented R-module N , by using the exact sequence 0 →M →

E0 → L0 → 0 where E0 is finitely cogenerated and L0 is strongly copresented,

we deduce that Ext1R(L
0,M) = 0. Therefore by [7, Theorem 7.31], the exact

sequence ebove is split. So, M is injective and hence id(M) ≤ 0. Assume that
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Copresented dimension of modules 159

n > 0. By [7, Corollary 6.42], we have that Extn+1
R (N,M) ∼= ExtnR(N,L

0) =

0. Thus by induction hypothesis, id(L0) ≤ n − 1. Therefore from the exact

sequence ebove, we deduce that id(M) ≤ n. �

Proposition 2.8. Let FEd(M) ≤ 1. Then the following statements are equiv-

alent:

(1) id(M) ≤ n;

(2) Extn+1
R (N,M) = 0 for every strongly copresented R-module N .

Proof. Since FEd(M) ≤ 1, the exact sequence 0 →M → E0 → L0 → 0 exists,

where E0 is injective and L0 is strongly copresented. Thus, Extn+1
R (N,M) = 0

for any strongly copresented R-module N if and only if ExtnR(N,L
0) = 0 if and

only if id(L0) ≤ n− 1 (by Proposition 2.7) if and only if id(M) ≤ n. �

Theorem 2.9. Let FEd(M) < ∞. Then the following statements are equiva-

lent:

(1) id(M) ≤ n;

(2) Extn+1
R (N,M) = 0 for every strongly copresented R-module N .

Proof. (1) ⇒ (2) It is clear.

(2) ⇒ (1) If FEd(M) = m, then the exact sequence

0 →M → E0 → E1 → · · · → Em−1 d
m−1

→ Em dm
→ · · · → Em+j → · · ·

exists, where Ei is finitely cogenerated for any i ≥ m. By Proposition 2.2,

n + 1 ≥ m. Let Extn+1
R (N,M) = 0 for every strongly copresented R-module

N . Thus by [7, Corollary 6.42], we have

Extn+1
R (N,M) ∼= Extn−m+1

R (N, cokerdm−1) = 0.

Since cokerdm−1 is strongly copresented, Proposition 2.8 impleis that

id(cokerdm−1) ≤ n−m

and so, we deduce that id(M) ≤ n. �

Corollary 2.10. Let D(R) <∞. Then:

D(R) = sup{pd(N) | N is strongly copresented}.

Proof. Assume that D(R) ≤ m. Thus, pd(N
′

) ≤ m for any R-module N
′

.

So, for any strongly copresented R-module N , pd(N) ≤ m. Conversely, let

pd(N) ≤ m for every strongly copresentedR-moduleN . Thus Extm+1
R (N,M) =

0 for every strongly presented R-module M . Since D(R) < ∞, FEd(M) < ∞

by Proposition 2.2. Therefore by Theorem 2.9, id(M) ≤ m and hence by [19,

corollary 3.7], D(R) ≤ m. �

Definition 2.11. For any ring R, we define the copresented dimension of R

to be FED(R) = sup{FEd(M) |M is a finitely cogenerated module}.
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Example 2.12. Let R = k[x3, x3y, xy3, y3], where k is a field with character-

istic p = 3. By Definition 2.11 and Proposition 2.2, FED(R∞) ≤ D(R∞) + 1,

where R∞ is perfect closure of R. On the other hand, k[x, y] is purely insep-

arable over R. Also, by [9, Proposition 3.3], (k[x, y])∞ is coherent. Therefore

by [10, Remark 1.4], R∞ is coherent. Since R is reduced, [2, Proposition 5.5]

implies that FED(R∞) ≤ dim(R) + 1 and so, FED(R∞) ≤ 3.

Proposition 2.13. The following statements are equivalent:

(1) FED(R) = 0;

(2) Every finitely cogenerated module has an infinite finite copresented;

(3) Every finitely cogenerated module is finitely copresented;

(4) R is co-noetherian.

Proof. The implication (1) =⇒ (2) =⇒ (3) follow immediately from Definiton

2.11.

(3) =⇒ (4) =⇒ (1) are trivial. �

Corollary 2.14. If FED(R) ≤ 0, then R is n-cocoherent.

Proof. Since every n-copresented moduleM is finitely cogenerated, Proposition

2.13 implies that M is (n+ 1)-copresented. �

Next, we study the copresented dimension of the direct sum of rings. But

before this we need the following lemma.

Lemma 2.15. Let f : R → S be a ring epimorphism. If MS is a right S-

module (hence a right R-module) and NR is a right R-module, then the following

statements hold:

(1) M ⊗R S ∼=MS.

(2) If f is flat and NR is a finitely cogenerated right R-module, then N⊗RS

is a finitely cogenerated right S-module.

(3) If f is flat , then MS is a finitely cogenerated right S-module if and

only if MR is a finitely cogenerated right R-module.

(4) If f is projective, then MS is an injective right S-module if and only if

MR is an injective right R-module.

Proof. (1) This is clear.

(2) For any family of submodules {Ni ⊗R 1S |i ∈ I} in N ⊗R S, if
⋂
(Ni ⊗R

1S) = 0, then we need to show that
⋂

i∈F (Ni ⊗R 1S) = 0 for some finite subset

F of I. Since f is flat, we have that
⋂

i∈I Ni ⊗R 1S = 0. So,
⋂

i∈I Ni = 0

and hence by hypotises
⋂

i∈F Ni = 0 for some finite subset F of I. Therefore,
⋂

i∈F (Ni ⊗R 1S) =
⋂

i∈F Ni ⊗R 1S = 0.

(3) (⇒): Let ψ : M →
∏

i∈I R is a monomorphism, then we claim that

π : M →
∏

i∈F R is a monomorphism for some finite subset F of I. We have

the following commutative diagram:
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Copresented dimension of modules 161

M
ψ
−→

∏
i∈I R

↓∼= ↓ g

M
h

−→
∏

i∈I S,

where since g is epimorphism and ψ is monomorphism, h is monomorphism.

So by hypothesis, α : M →
∏

i∈F S is a monomorphism for some finite subset

F of I. Therefore the following commutative diagram:

M
γ

−→
∏

i∈F R

↓∼= ↓ β

M
α

−→
∏

i∈F S,

where β is epimorphism and α is monomorphism, implies that γ is monomor-

phism.

(⇐) : This follows from (1) and (2)

(4) By [5, Lemma 3.3],MS is an (n, d)-injective right S-module if and only if

MR is an (n, d)-injective right R-module. If n = 0, d = 0, Then (4) is hold. �

Theorem 2.16. Assume thet R and S are two rings. Then:

FED(R⊕ S) = sup{FED(R),FED(S)}.

Proof. We first show that FED(R ⊕ S) ≤ sup{FED(R),FED(S)}. Consider

FED(R) = n,FED(S) = m and n ≥ m. Also, let M be a finitely cogenerated

right (R⊕S)-module. ThenM has a unique decompositionM = A⊕B, where

A,B are right modules of rings R and S, respectively. By [15, Lemma 1.1],

A and B are finitely cogenerated right (R ⊕ S)-module. So by Lemma 2.15,

A is finitely cogenerated right R-module and B is finitely cogenerated right

S-module. Therefore FEd(A) ≤ n and FEd(B) ≤ m, and hence there is an

exact sequences

0 → A→ E0
a → E1

a → · · · → En−1
a → En

a → · · · ,

0 → B → E0
b → E1

b → · · · → Em−1
b → Em

b → · · ·

of injective right R-modules Ei
a and injective right S-modules Ei

b such that

Ei
a, E

i
b are finitely cogenerated for any i ≥ n and i ≥ m, respectively. So, we

deduce that the exact sequence

0 → A⊕B → E0
a ⊕E0

b → E1
a ⊕E1

b → · · · → En−1
a ⊕Em−1

b → En
a ⊕Em

b → · · ·

exists, where by Lemma 2.15, every Ei
a ⊕Ei

b is injective right (R⊕ S)-module

and also, every Ei
a ⊕ Ei

b is finitely cogenerated for any i ≥ n. Therefore, we

have FED(R⊕ S) ≤ sup{FED(R),FED(S)}.

Conversely, Assume that FED(R ⊕ S) = d. If M is a finitely cogenerated

right R-module. Then by Lemma 2.15,M is a finitely cogenerated right (R⊕S)-

module and hence FED(M(R⊕S)) ≤ d. Thus, the exact sequence 0 → M →

E0 → E1 → · · · → Ed−1 → Ed → · · · of injective right (R ⊕ S)-modules

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
24

-0
4-

10
 ]

 

                             9 / 13

http://ijmsi.com/article-1-1036-fa.html


162 M. Amini, F. Hasani

Ei exists, where every Ei is finitely cogenerated for any i ≥ d. Let Ei =

Ci ⊕Di, where Ci is a R-module and Di is a S-module. On the other hand,

M is a right R-module, so we have the exact sequence 0 → M → C0 →

C1 → · · · → Cd−1 → Cd → · · · of R-modules. But, every Ci is injective

right (R ⊕ S)-module and also every Ci is finitely cogenerated right (R ⊕ S)-

module for i ≥ d. So by [15, Lemma 1.1] and Lemma 2.15, Ci is an injective

right R-module and it is finitely cogenerated R-module for i ≥ d. Therefore

FEd(M) ≤ d and hence FED(R) ≤ d. Similarly, FED(S) ≤ d and implies that

sup{FED(R),FED(S)} ≤ FED(R⊕ S). �

Proposition 2.17. Let S ≥ R be a finite normalizing extension with SR projec-

tive as an R-module. Then for any right R-moduleMR, FEd(HomR(S,M))S ≤

FEd(MR).

Proof. Asume that FEd(MR) = n. Then there axists an exact sequence of

injective R-modules

0 →M → E0 → E1 → · · · → En−1 → En → · · · ,

where each Ei is finitely cogenerated for any i ≥ n. Since S is projective, there

is an exact sequence

0 → HomR(S,M) → HomR(S,E
0) → · · · → HomR(S,E

n) → · · ·

of injective S-modules HomR(S,E
i), where by [13, Propositon 8.3], HomR(S,E

i)

is finitely cogenerated for any i ≥ n. Thus FEd(HomR(S,M))S ≤ n and hence,

we have FEd(HomR(S,M))S ≤ FEd(MR). �

Proposition 2.18. Let S ≥ R be a finite normalizing extension, SR be Pro-

jective, and S be R-projective. Then for each right S-module MS, FEd(MS) ≤

FEd(HomR(S,M)).

Proof. By [12, Lemma 1.1],MS is isomorphic to a direct summand of HomR(S,M).

So, from Corollary 2.6, we deduce that FEd(MS) ≤ FEd(HomR(S,M)). �

Proposition 2.19. Let S ≥ R be an almost excellent extension. Then for each

right S-module MS, FEd(MR) ≤ FEd(MS).

Proof. Asume that FEd(MS) = n. So, there axists an exact sequence of injec-

tive S-modules

0 →M → E0 → E1 → · · · → En−1 → En → · · · ,

where each Ei is finitely cogenerated for any i ≥ n. Thus by [18, Proposition

5.1], every Ei is an injective R-module and also, it is a finitely cogenerated

R-module for i ≥ n by [14, Theorem 5]. Therefore, it follows that FEd(MR) ≤

FEd(MS). �

Corollary 2.20. Let S ≥ R be an almost excellent extension. Then for each

right S-module MS, FEd(MR) = FEd(MS) = FEd(HomR(S,M)).
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Theorem 2.21. Asume that S ≥ R is a finite normalizing extension and SR

is Projective. Then:

(1) If S is R-projective and FED(S) <∞, then FED(S) ≤ FED(R).

(2) If FED(R) < ∞, then FED(R) < FED(S) + max{k, d}, where k =

id(SR) and d = sup{FEd(MR) |M ∈ Mod− S and FEd(MS) = 0}.

Proof. (1) Asume that FED(S) = n and FEd(MS) = n for a finitely cogener-

ated S-module M . Since SR is projective, by hypothesis and [12, Lemma 1.1],

MS is isomorphic to a direct summand of HomR(S,M) and hence we have:

0 → K → HomR(S,M)) →MS → 0.

By [14, Lemma 4], HomR(S,M)) is finitely cogenerated S-module, since MR is

a finitely cogenerated R-module. So, FEd(HomR(S,M)S) ≤ n. On the other

hand, by Theorem 2.5,

FEd(K) ≤ max{n, n− 1},

n = FEd(MS) ≤ max{FEd(HomR(S,M)S),FEd(KS)− 1} ≤ FED(S) = n.

Therefore FEd(HomR(S,M)S) = n. Thus, Proposition 2.17 implies that

FEd(HomR(S,M)S) ≤ FEd(MR)

and hence FED(S) ≤ FED(R).

(2) Asume that FED(R) = n and FEd(MR) = n for a finitely cogenerated

R-module M . Since SR is projective, by [12, Lemma 1.1], MR is isomorphic

to a direct summand of HomR(S,M) which induces the following short exact

sequence of R-modules:

0 → K → HomR(SR,M)) →MR → 0.

It is clear that HomR(SR,M)) is a finitely cogenerated R-module. Thus The-

orem 2.5 implies that

n = FEd(MR) ≤ max{FEd(HomR(SR,M)),FEd(KR)− 1} ≤ FED(R) = n,

and hence FEd(HomR(SR,M)) = n.

If FEd(HomR(S,M))S = m ≤ FED(S), then there is an injective resolution

0 −→ HomR(S,M)
f0
−→ E0 f1

−→ E1 −→ · · · −→ Em−1 fm
−→ Em fm+1

−→ · · ·

of HomR(S,M), where every Ei is a finitely cogenerated S-module for any

i ≥ m. Let Di = coker(fi) for every i ≥ 0. Thus, the following short exact

sequences

0 −→ HomR(S,M) −→ E0 → D0 −→ 0,

· · ·

0 −→ Dm−2 −→ Em−1 −→ Dm−1 −→ 0,

0 −→ Dm−1 −→ Em −→ Dm −→ 0
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exists, where FEd(Dm−1) = 0. But by hypothesis and Proposition 2.2, we

have:

FEd(Di)R ≤ id(Di)R + 1 ≤ id(SR) + 1 = k + 1 , FEd(Dm−1)R ≤ d.

Therefore by Theorem 2.5, we deduce that:

FEd(Dm−2)R ≤ max{FEd(Em−1)R,FEd(D
m−1)R + 1} < max{k + 1, d +

1} = 1 +max{k, d},

FEd(Dm−3)R ≤ max{FEd(Em−2)R,FEd(D
m−2)R + 1} < 2 + max{k, d},

...

FEd(D0)R ≤ max{FEd(E1)R,FEd(D
1)R + 1} < m− 1 + max{k, d},

n = FEd(HomR(S,M))R ≤ max{FEd(E0)R,FEd(D
0)R+1} < m+max{k, d}.

Thus FED(R) < m + max{k, d} ≤ FED(S) + max{k, d} and so, the proof is

complete. �

Corollary 2.22. Let S ≥ R be an almost excellent extension. Then FED(R) <

FED(S) + id(S)R.

Proof. By Proposition 2.19 and Theorem 2.21, this is clear. �
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